Phenotypes of B Cells Differ in EBV-positive Burkitt-s lymphoma Derived Cell Lines
Authors: Irina Spaka, Rita Birkenfelde, Svetlana Kozireva, Jevgenija Osmjana, Madara Upmane, ElenaKashuba, Irina Kholodnyuk Holodnuka
Abstract:
Epstein-Barr virus (EBV) is implicated in the pathogenesis of the endemic Burkitt-s lymphoma (BL). The EBVpositive BL-derived cell lines initially maintain the original tumor phenotype of EBV infection (latency I, LatI), but most of them drift toward a lymphoblast phenotype of EBV latency III (LatIII) during in vitro culturing. The aim of the present work was to characterize the B-cell subsets in EBV-positive BL cell lines and to verify whether a particular cell subset correlates with the type of EBV infection. The phenotype analysis of two EBV-negative and eleven EBV-positive (three of LatI and eight of LatIII) BL cell lines was performed by polychromatic flow cytomery, based on expression pattern of CD19, CD10, CD38, CD27, and CD5 markers. Two cell subsets, CD19+CD10+ and CD19+CD10-, were defined in LatIII BL cell lines. In both subsets, the CD27 and CD5 cell surface expression was detected in a proportion of the cells.
Keywords: B-cell subsets, Burkitt's lymphoma cell lines, EBV latency, phenotype profiles.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079808
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963References:
[1] C. A. Van den Bosch, "Is endemic Burkitt's lymphoma an alliance between three infec-tions and a tumor promoter?," Lancet Oncol., pp. 5738-5746, 2004.
[2] G. Brady, G. J. MacArthur, P. J. Farrell, "Epstein-Barr virus and Burkitt lymphoma," J. Clin. Pathol., vol. 60(12), pp. 1397-1402, 2007.
[3] C. Bellan, L. Stefano, F. Giulia de, E. A. Rogena, L. Lorenzo, "Burkitt lymphoma versus diffuse large B-cell lymphoma: a practical approach," Hematol. Oncol., vol. 28(2), pp. 53-6, 2010.
[4] U. Klein, G. Klein, B. Ehlin-Henriksson, K. Rajewsky, R. K├╝ppers, "Burkitt's lymphoma is a malignancy of mature B cells expressing somatically mutated V region genes," Mol. Med., vol. 1, pp. 495-505, 1995.
[5] G. Klein, "Burkitt lymphoma-a stalking horse for cancer research?," Semin. Cancer Biol., vol. 19(6), pp. 347-50, 2009.
[6] L. S. Young, A. B. Rickinson, "Epstein-Barr virus: 40 years on," Nat. Rev. Cancer, vol. 4, pp. 757-768, 2004.
[7] G. Klein, E. Klein, E. Kashuba, "Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes," Biochem. Biophys. Res. Commun., vol. 396, pp. 67-73, 2010.
[8] E. Klein, L. L. Kis, G. Klein, "Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions," Oncogene, vol. 26, pp. 1297-1305, 2007.
[9] J. Nicholas, "Human gammaherpesvirus cytokines and chemokine receptors," J. Interferon Cytokine Res., vol. 25, pp. 373-383, 2005.
[10] T. Nakayama, R. Fujisawa, D. Izawa, K. Hieshima, K. Takada, O. Yoshie, "Human B cells immortalized with Epstein-Barr virus upregulate CCR6 and CCR10 and downregulate CXCR4 and CXCR5," J. Virol., vol. 76, pp. 3072-3077, 2002.
[11] B. Ehlin-Henriksson, W. Liang, A. Cagigi, F. Mowafi, G. Klein, A. Nilsson, "Changes in chemokines and chemokine receptor expression on tonsillar B cells upon Epstein-Barr virus infection," Immunology, vol. 127, pp. 549-557, 2009.
[12] D. A. Thorley-Lawson, "Epstein-Barr virus: exploiting the immune system," Nat. Rev. Immunol., vol. 1, pp. 75-82, 2001.
[13] M. Rowe, D. T. Rowe, C. D. Gregory, L. S. Young, P. J. Farrell, H. Rupani, A. B. Rickinson, "Dif-ferences in B cell growth phenotype reflects novel patterns of Epstein-Barr virus latent gene expression in Burkitt-s lymphoma cells," EMBO J., vol. 6, pp. 2743-2751, 1987.
[14] A. B. Rickinson, S. P. Lee, N. M. Steven, "Cytotoxic T lymphocyte responses to Epstein-Barr virus," Curr. Opin. Immunol., vol. 8(4), pp. 492-497, 1996.
[15] K. Pokrovskaja, B. Ehlin-Henriksson, J. Bartkova, J. Bartek, R. Scuderi, L. Szekely, K. G. Wiman, G. Klein, "Phenotype-related differences in the expression of D-type cyclins in human B cell-derived lines," Cell Growth Differ., vol. 7, pp. 1723-1732, 1996.
[16] A. Maeda, C. Kiss, F. Chen, B. Ehlin-Henriksson, N. Nagy, L. Szekely, K. Takada, E. Klein, G. Klein, " EBNA promoter usage in EBV-negative Burkitt lymphoma cell lines converted with a neomycin-resistant EBV strain," Int. J. Cancer, vol. 93, pp. 714-719, 2001.
[17] I. D. Kholodnyuk, S. Kozireva, M. Kost-Alimova, V. Kashuba, G. Klein, S. Imreh, "Down regulation of 3p genes, LTF, SLC38A3 and DRR1, upon growth of human chromosome 3-mouse fibrosarcoma hybrids in severe combined immunodeficiency mice," Int. J. Cancer, vol. 119, pp. 99-107, 2006.
[18] R. J. Tierney, N. Steven, L. S. Young, A. B. Rickinson, "Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state," J. Virol., vol. 68, pp. 7374-7385, 1994.
[19] M. Conacher, R. Callard, K. McAulay, H. Chapel, D. Webster, D. Kumararatne et al, "Epstein-Barr virus can establish infection in the absence of a classical memory B-cell population," J. Virol., vol. 79, pp. 11128-11134, 2005.
[20] U. Klein, K. Rajewsky, R. K├╝ppers, "Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells," J. Exp. Med., vol. 188, pp. 1679-1689, 1998.
[21] M. Perez-Andres, B. Paiva, W. G. Nieto, A. Caraux, A. Schmitz, J. Almeida et al, "Human peripheral blood B-cell compartments: a crossroad in B-cell traffic," Cytometry B Clin. Cytom., vol. 78, Suppl 1, pp. S47-60, 2010.
[22] A. Caraux, B. Klein, B. Paiva, C. Bret, A. Schmitz, G. M. Fuhler et al, "Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138- and CD138+ plasma cells," Haematologica, vol. 95, pp. 1016-1020, 2010.