
 

 

  
Abstract—This study presents the numerical simulation of 

three-dimensional incompressible steady and laminar fluid flow and 
conjugate heat transfer of a trapezoidal microchannel heat sink using 
water as a cooling fluid in a silicon substrate. Navier-Stokes equations 
with conjugate energy equation are discretized by finite-volume 
method. We perform numerical computations for a range of 50  Re  
600, 0.05W   P   0.8W, 20W/cm2 q′′   40W/cm2. The present 
study demonstrates the numerical optimization of a trapezoidal 
microchannel heat sink design using the response surface 
methodology (RSM) and the genetic algorithm method (GA). The 
results show that the average Nusselt number increases with an 
increase in the Reynolds number or pumping power, and the thermal 
resistance decreases as the pumping power increases. The thermal 
resistance of a trapezoidal microchannel is minimized for a constant 
heat flux and constant pumping power. 
 

Keywords—Microchannel heat sinks, Conjugate heat transfer, 
Optimization, Genetic algorithm method.  

I. INTRODUCTION 
ICROCHANNEL heat sink provides efficient cooling for 
the high power density applications. In practice, the 

cross-section of microchannels made by modern 
micromachining technology in silicon substrates is essentially 
trapezoidal. An experimental investigation has been performed 
on the laminar convective heat transfer and pressure drop of 
water in different trapezoidal silicon microchannels [1], [2]. It 
was found that the values of the Nusselt number and the 
apparent friction constant dependent greatly on different 
parameters. Koo and Kleinstreuer [3] found that the viscous 
dissipation was strongly dependent upon the hydraulic diameter 
and the aspect ratio of the channel. Herwig and Mahulikar [4] 
investigated that the temperature dependence of the properties 
of the fluid. Li et al. [5] found that compared with the inlet 
property method, both average and variable property methods 
have significantly lower apparent friction coefficients, but 
higher Nusselt numbers in the longitudinal direction. 
Optimization methods with numerical analyses are regarded as 
general design tools and offer a number of advantages, 
including automated design capability, varieties of constraints, 
and multi-objective applications. Liu and Garimella [6] 
presented analytical models and compared these models with 
the more robust three-dimensional numerical model and 
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optimized the microchannel geometry. Husain and Kim [7], [8] 
presented a single objective optimization of microchannel heat 
sink based on the surrogate methods. These studies revealed 
that pressure and pumping power constrained optimization 
limits the applicability of pumping source used at the 
micro-level. Husain and Kim [9], [10] performed shape 
optimization of micro heat exchanger and microchannel heat 
sink respectively and obtained Pareto-optimal solutions. 
Husain and Kim [11] demonstrated the numerical 
multi-objective optimization of a microchannel heat sink 
design. The steady and laminar fluid flow and conjugate heat 
transfer were studied by a three-dimensional numerical 
analysis. 

The objective of this work is to numerically investigate the 
fluid flow and the heat transfer characteristics of water in 
trapezoidal microchannels made of silicon plates and attempt to 
explain the optimum results. 

II. PROBLEM DESCRIPTION AND NUMERICAL SCHEME 
A silicon-based microchannel heat sink model as shown in 

Fig. 1 has been taken to analyze and optimize based on genetic 
algorithm. The flow is assumed to be steady and laminar, and a 
uniform heat flux is applied at the bottom of the heat sink. The 
governing equations for the 3-D incompressible flow can be 
written as follows, 
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Energy equation of fluid 
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Energy equation of solid 
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Under hydraulic boundary conditions, uniform velocities are 
applied at the channel inlet. Exposed to the atmosphere, the 
outlet pressure is the static pressure. The no-slip boundary 
condition is applied at all solid walls. The thermal boundary 
condition at the bottom wall is a constant wall heat flux, while 
an adiabatic boundary condition is imposed on the top wall and  

0T T=  at the microchannel inlet. The governing equations are 
discretized by using a control-volume-based finite-difference 
method with a power-law scheme on an orthogonal 
non-uniform staggered grid. The coupling of velocity and 
pressure terms of momentum equation are solved by SIMPLE 
(Semi-Implicit Method for Pressure-Linked Equation) 
algorithm [12]. The solution is considered convergent when the 
normalized residual of the algebraic equation is less than a 
prescribed value of 10-4. 
 

 
Fig. 1 Schematic of microchannel heat sink 

 
Multi-objective optimization based on evolutionary 

algorithms requires many evaluations of objective functions to 
search for the optimal solutions. These evaluations of objective 
functions become very expensive and time consuming in the 
absence of a representative response function. Therefore, 
surrogate-based approximation is used to save time and to 
avoid the numerical cost. The genetic algorithms (GA) use a 
population of several individuals to perform the optimization 
by simulating the benefit and evolution mechanism of biology 
[13]. It was suggested to apply various surrogate models. In this 
study, the response surface methodology (RSM) [14] and 
genetic algorithms (GA) are used to carry out the optimal 
process. The response surface methodology is a parameter 
design for efficient experiment. It can find out the mix effect of 
parameters by fewer experiments, and create an objective 
function. After creating an objective function, we use the 
genetic algorithms (GA) to find out the optimal geometries. GA 
solves optimization problem iteratively based on biological 
evolution process in nature. 

In the solution procedure, a set of parameter values is 
randomly selected. Set is ranked based on fitness values (i.e. 
performance factor in this study). The best combination of 
parameters leading to minimum fitness values is determined. A 
new combination of parameters is generated from the best 
combination by simulating biological mechanisms of offspring, 
crossover and mutation. This process is repeated until the 
fitness value with a new combination of parameters cannot be 
further reduced anymore. The final combination of parameters 
is considered as the optimum solution. It is convenient to adopt 
GA to resolve the heat sink optimization. 

 
Fig. 2 Grid independent test of case 2 

 

 
Fig. 3 Friction constant distribution 

III. RESULTS AND DISCUSSION 
The geometric parameters of the case studied are shown in 

Table I. For the validation of the theoretical model and the 
choice of appropriate boundary conditions, the numerical 
results are compared to the available experimental results in the 
literature for case 2, which is shown in Fig. 2. It indicates that 
the Reynolds number dependence of the Nusselt number is 
obvious. A comparison of theoretical predictions with the 
experimental data in the literature is used to assess the grid 
independence of the results. Different size meshes, 22×24×50, 
26×28×60 and 30×32×70 are employed in testing the numerical 
model. It has been validated using experimental data reported 
in Wu and Cheng [1]. Certain discrepancies between 
calculations and the available data of Wu and Cheng [1] may be 
caused by the roundoff and discretization or measurement 
errors. Considering these factors, the overall comparisons with 
test data are satisfactory. Fig. 3 shows the distribution of 
friction constant for laminar flow. It can be seen from the figure 
that the laminar friction constant fRe of the trapezoidal 
channels increases with the increase in Re, having a trapezoidal 
cross-section, deviate greatly from the classical value of fRe 
=16. 

From Fig. 4, it can be seen that the Nusselt number increases 
with the increase of Re, especially for the optimum case. The 
change in the Nusselt number due to different geometric 
parameters are more obvious at large Reynolds numbers than at 
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low Reynolds numbers. For the trapezoidal channels, there are 
three geometric parameters including α ( )c

w c

W
W W+ , β

( )c

b c

H
H H+  

and γ ( )b

c

W
W which affect the friction and heat 

transfer. Fig. 5 shows that the change of the total thermal 
resistance is not obvious at β ＞0.2. Fig. 6 presents that total 
thermal resistance decreases while β  and γ increase at 

0.65α =  and P=0.3W. Therefore design variables β  and γ
can be suitably utilized to economize the optimization 
procedure in view of multi-variable, multi-objective and 
multi-disciplinary design optimizations. From Figs. 7 and 8, the 
results show that a lower thermal resistance can be obtained at 
the cost of a higher pumping power, whereas low pumping 
power are associated with high thermal resistances. It provides 
a designer to pick up the optimal solution in accordance with 
the available pumping power to drive the coolant. 
 

TABLE I 
GEOMETRIC PARAMETERS 

 Wc Wb Hc Hb Wb/Wc 

Case1 423.2μm 327.4μm 56.13μm 193.87μm 0.774 
Case2 157.99μm 61.62μm 56.28μm 193.72μm 0.390 
Case3 437.21μm 270.19μm 110.7μm 139.9μm 0.618 
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Fig. 4 Averaged Nusselt number distribution 
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Fig. 5 Effects of the depth of the microchannel tothewhole depth ( β ) 

on the total thermal resistance 
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Fig. 6 Effects of the ratio of upper width and lower width ( γ ) on the 

total thermal resistance 
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Fig. 7 Distribution of inlet thermal resistance at different pumping 

power 
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Fig. 8 Distribution of outlet thermal resistance at different pumping 

power 

IV. CONCLUSION 
Numerical simulations of Nusselt number Nu, friction 

constant fRe, and thermal resistance thR for the laminar flow of 
water through the trapezoidal microchannels with different 
geometric parameters have been obtained. The laminar Nusselt 
number and friction constant of the trapezoidal microchannels 
increase with Re. This increase is more obvious at large 
Reynolds numbers than that at low Reynolds numbers. The 
enhancement in heat transfer is more significant at large 
Reynolds numbers. A comparison of results shows that 
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