Search results for: Biological Powdered Activated Carbon System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9563

Search results for: Biological Powdered Activated Carbon System

9323 Thermal and Electrical Properties of Carbon Nanotubes Purified by Acid Digestion

Authors: Neslihan Yuca, Nilgün Karatepe, Fahrettin Yakuphanoğlu

Abstract:

Carbon nanotubes (CNTs) possess unique structural, mechanical, thermal and electronic properties, and have been proposed to be used for applications in many fields. However, to reach the full potential of the CNTs, many problems still need to be solved, including the development of an easy and effective purification procedure, since synthesized CNTs contain impurities, such as amorphous carbon, carbon nanoparticles and metal particles. Different purification methods yield different CNT characteristics and may be suitable for the production of different types of CNTs. In this study, the effect of different purification chemicals on carbon nanotube quality was investigated. CNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. The liquid phase oxidation method was applied for the purification of the synthesized CNT materials. Three different acid chemicals (HNO3, H2SO4, and HCl) were used in the removal of the metal catalysts from the synthesized CNT material to investigate the possible effects of each acid solution to the purification step. Purification experiments were carried out at two different temperatures (75 and 120 °C), two different acid concentrations (3 and 6 M) and for three different time intervals (6, 8 and 15 h). A 30% H2O2 : 3M HCl (1:1 v%) solution was also used in the purification step to remove both the metal catalysts and the amorphous carbon. The purifications using this solution were performed at the temperature of 75°C for 8 hours. Purification efficiencies at different conditions were evaluated by thermogravimetric analysis. Thermal and electrical properties of CNTs were also determined. It was found that the obtained electrical conductivity values for the carbon nanotubes were typical for organic semiconductor materials and thermal stabilities were changed depending on the purification chemicals.

Keywords: Carbon nanotubes, purification, acid digestion, thermalstability, electrical conductivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
9322 Optimization of Soybean Oil by Modified Supercritical Carbon Dioxide

Authors: N. R. Putra, A. H. Abdul Aziz, A. S. Zaini, Z. Idham, F. Idrus, M. Z. Bin Zullyadini, M. A. Che Yunus

Abstract:

The content of omega-3 in soybean oil is important in the development of infants and is an alternative for the omega-3 in fish oils. The investigation of extraction of soybean oil is needed to obtain the bioactive compound in the extract. Supercritical carbon dioxide extraction is modern and green technology to extract herbs and plants to obtain high quality extract due to high diffusivity and solubility of the solvent. The aim of this study was to obtain the optimum condition of soybean oil extraction by modified supercritical carbon dioxide. The soybean oil was extracted by using modified supercritical carbon dioxide (SC-CO2) under the temperatures of 40, 60, 80 °C, pressures of 150, 250, 350 Bar, and constant flow-rate of 10 g/min as the parameters of extraction processes. An experimental design was performed in order to optimize three important parameters of SC-CO2 extraction which are pressure (X1), temperature (X2) to achieve optimum yields of soybean oil. Box Behnken Design was applied for experimental design. From the optimization process, the optimum condition of extraction of soybean oil was obtained at pressure 338 Bar and temperature 80 °C with oil yield of 2.713 g. Effect of pressure is significant on the extraction of soybean oil by modified supercritical carbon dioxide. Increasing of pressure will increase the oil yield of soybean oil.

Keywords: Soybean oil, SC-CO2 extraction, yield, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 945
9321 Nanocomputing Memory Devices Formed from Carbon Nanotubes and Metallofulleres

Authors: Richard K. F. Lee, James M. Hill

Abstract:

In this paper, we summarize recent work of the authors on nanocomputing memory devices. We investigate two memory devices, each comprising a charged metallofullerene and carbon nanotubes. The first device involves two open nanotubes of the same radius that are joined by a centrally located nanotube of a smaller radius. A metallofullerene is then enclosed inside the structure. The second device also involves a etallofullerene that is located inside a closed carbon nanotube. Assuming the Lennard-Jones interaction energy and the continuum approximation, for both devices, the metallofullerene has two symmetrically placed equal minimum energy positions. On one side the metallofullerene represents the zero information state and by applying an external electrical field, it can overcome the energy barrier, and pass from one end of the tube to the other, where the metallofullerene then represents the one information state.

Keywords: Carbon nanotube, continuous approach, energy barrier, Lennard-Jones potential, metallofullerene, nanomemory device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
9320 Optical Fiber Sensor for Detection of Carbon Nanotubes

Authors: C. I. L. Justino, A. C. Freitas, T. A. P. Rocha-Santos, A. C. Duarte

Abstract:

This work relates the development of an optical fiber (OF) sensor for the detection and quantification of single walled carbon nanotubes in aqueous solutions. The developed OF displays a compact design, it requires less expensive materials and equipment as well as low volume of sample (0.2 mL). This methodology was also validated by the comparison of its analytical performance with that of a standard methodology based on ultraviolet-visible spectroscopy. The developed OF sensor follows the general SDS calibration proposed for OF sensors as a more suitable calibration fitting compared with classical calibrations.

Keywords: Optical fiber sensor, single-walled carbon nanotubes, SDS calibration model, UV-Vis spectroscopy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
9319 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable of enhancing carbon dioxide emission decline was fabricated and tested at laboratory scale in conformism to various environmental guidelines and also to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms is presented. Single gas permeation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous support was carried out to investigate individual gas permeation behaviours at different pressures at room temperature. Membrane fabrication was achieved using after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However above a pressure of 3bar, CO2 permeability ratio to that of the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: Carbon dioxide composite inorganic membranes, permeability, transport mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
9318 Supercritical Carbon Dioxide Extraction of Phenolics and Tocopherols Enriched Oil from Wheat Bran

Authors: Kyung-Tae Kwon, Md. Salim Uddin, Go-Woon Jung, Jeong-Eun Sim, Byung-Soo Chun

Abstract:

Supercritical carbon dioxide (SC-CO2) was used as a solvent to extract oil from wheat bran. Extractions were carried out in a semi-batch process at temperatures ranging from 40 to 60ºC and pressures ranging from 10 to 30 MPa, with a carbon dioxide (CO2) flow rate of 26.81 g/min. The oil obtained from wheat bran at different extraction conditions was quantitatively measured to investigate the solubility of oil in SC-CO2. The solubility of wheat bran oil was found to be enhanced in high temperature and pressure. The composition of fatty acids in wheat bran oil was measured by gas chromatography (GC). Linoleic, palmitic, oleic and γ-linolenic acid were the major fatty acids of wheat bran oil. Tocopherol contents in oil were analyzed by high performance liquid chromatography (HPLC). The highest amount of phenolics and tocopherols (α and β) were found at temperature of 60ºC and pressure of 30 MPa.

Keywords: Supercritical carbon dioxide, Tocopherols, Totalphenolic content, Wheat bran oil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566
9317 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces

Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz

Abstract:

The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.

Keywords: Carbon nanotubes, static friction, dynamic friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
9316 Field Emission Properties of Multi-wall Carbon Nanotube Field Emitters using Graphite Tip by Electroporetic Deposition

Authors: Gui Sob Byun, Yang Doo Lee, Kyong Soo Lee, Keun Soo Lee, Sun-Woo Park, Byeong Kwon Ju

Abstract:

We fabricated multi-walled carbon nanotube (MCNT) emitters by an electroporetic deposition (EPD) method using a MCNT-sodium dodecyl sulfate (SDS) suspension. MCNT films were prepared on graphite tip using EPD. We observe field emission properties of MCNT film after heat treatment. Consequently, The MCNT film on graphite tip exhibit good electron emission current.

Keywords: Field emission, Multi-wall carbon-nanotube (MCNT), Electrophoretic deposition (EPD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
9315 The Effect of Biochar, Inoculated Biochar and Compost Biological Component of the Soil

Authors: H. Dvořáčková, I. Mikajlo, J. Záhora, J. Elbl

Abstract:

Biochar can be produced from the waste matter and its application has been associated with returning of carbon in large amounts into the soil. The impacts of this material on physical and chemical properties of soil have been described. The biggest part of the research work is dedicated to the hypothesis of this material’s toxic effects on the soil life regarding its effect on the soil biological component. At present, it has been worked on methods which could eliminate these undesirable properties of biochar. One of the possibilities is to mix biochar with organic material, such as compost, or focusing on the natural processes acceleration in the soil. In the experiment has been used as the addition of compost as well as the elimination of toxic substances by promoting microbial activity in aerated water environment. Biochar was aerated for 7 days in a container with a volume of 20 l. This way modified biochar had six times higher biomass production and reduce mineral nitrogen leaching. Better results have been achieved by mixing biochar with compost.

Keywords: Leaching of nitrogen, soil, biochar, compost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3031
9314 Investigation of Wood Chips as Internal Carbon Source Supporting Denitrification Process in Domestic Wastewater Treatment

Authors: Ruth Lorivi, Jianzheng Li, John J. Ambuchi, Kaiwen Deng

Abstract:

Nitrogen removal from wastewater is accomplished by nitrification and denitrification processes. Successful denitrification requires carbon, therefore, if placed after biochemical oxygen demand (BOD) and nitrification process, a carbon source has to be re-introduced into the water. To avoid adding a carbon source, denitrification is usually placed before BOD and nitrification processes. This process however involves recycling the nitrified effluent. In this study wood chips were used as internal carbon source which enabled placement of denitrification after BOD and nitrification process without effluent recycling. To investigate the efficiency of a wood packed aerobic-anaerobic baffled reactor on carbon and nutrients removal from domestic wastewater, a three compartment baffled reactor was presented. Each of the three compartments was packed with 329 g wood chips 1x1cm acting as an internal carbon source for denitrification. The proposed mode of operation was aerobic-anoxic-anaerobic (OAA) with no effluent recycling. The operating temperature, hydraulic retention time (HRT), dissolved oxygen (DO) and pH were 24 ± 2 , 24 h, less than 4 mg/L and 7 ± 1 respectively. The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) attained was 99, 87 and 83% respectively. TN removal rate was limited by nitrification as 97% of ammonia converted into nitrate and nitrite was denitrified. These results show that application of wood chips in wastewater treatment processes is an efficient internal carbon source. 

Keywords: Aerobic-anaerobic baffled reactor, denitrification, nitrification, wood chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
9313 Concept of Net Zero Ecotourism in Sustainable Tourism Industry Development

Authors: Kwok Tak Kit

Abstract:

With the increase of demand and popularity of ecotourism development to address the concern of carbon emission, the acceleration of development of the concept of net zero carbon ecotourism can increase international competitiveness, sustainability and productivity. This paper aims to outline the major key components and considerations in ecotourism development with integration of net zero strategy and provide recommendation and reference to government agents, Architecture, Engineering and Construction (AEC) industry and stakeholders to contribute to the target of net zero and environmentally friendly ecotourism development project. This paper explores the alternative to the reliance on local regulation and ecotourism certification programs as a base tool to achieve the higher standard of the reduction of the use of energy and natural resources in ecotourism development and to enhance their sustainability.

Keywords: Net zero ecotourism, sustainability, embodied carbon, Paris Agreement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
9312 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste

Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh

Abstract:

The outstanding mechanical properties of Carbon  nanotubes (CNTs) have generated great interest for their potential as  reinforcements in high performance cementitious composites. The  main challenge in research is the proper dispersion of carbon  nanotubes in the cement matrix. The present work discusses the role  of dispersion of multiwalled carbon nanotubes (MWCNTs) on the  compressive strength characteristics of hydrated Portland IS 1489  cement paste. Cement-MWCNT composites with different mixing  techniques were prepared by adding 0.2% (by weight) of MWCNTs  to Portland IS 1489 cement. Rectangle specimens of size  approximately 40mm × 40mm ×160mm were prepared and curing of  samples was done for 7, 14, 28 and 35days. An appreciable increase  in compressive strength with both techniques; mixture of MWCNTs  with cement in powder form and mixture of MWCNTs with cement  in hydrated form 7 to 28 days of curing time for all the samples was  observed.

 

Keywords: Carbon Nanotubes, Portland Cement, Composite, Compressive Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135
9311 Characterization of Microroughness Parameters in Cu and Cu2O Nanoparticles Embedded in Carbon Film

Authors: S.Solaymani, T.Ghodselahi, N.B.Nezafat, H.Zahrabi, A.Gelali

Abstract:

The morphological parameter of a thin film surface can be characterized by power spectral density (PSD) functions which provides a better description to the topography than the RMS roughness and imparts several useful information of the surface including fractal and superstructure contributions. Through the present study Nanoparticle copper/carbon composite films were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and copper target. Surface morphology of thin films is characterized by using atomic force microscopy (AFM). The Carbon content of our films was obtained by Rutherford Back Scattering (RBS) and it varied from .4% to 78%. The power values of power spectral density (PSD) for the AFM data were determined by the fast Fourier transform (FFT) algorithms. We investigate the effect of carbon on the roughness of thin films surface. Using such information, roughness contributions of the surface have been successfully extracted.

Keywords: Atomic force microscopy, Fast Fourier transform, Power spectral density, RBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
9310 Hybrid Stainless Steel Girder for Bridge Construction

Authors: Tetsuya Yabuki, Yasunori Arizumi, Tetsuhiro Shimozato, Samy Guezouli, Hiroaki Matsusita, Masayuki Tai

Abstract:

The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate strength of the hybrid stainless steel girder is equal to or greater than that of conventional carbon steel girder. The benefit of the life-cycle cost of the hybrid stainless steel girder is also shown.

Keywords: Smart structure, hybrid stainless steel members, ultimate strength, steel bridge, corrosion prevention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
9309 Secondary School Students- Perceptions about Biological Issues in South Korea

Authors: Jung-Hyun Kim, Kew-Cheol Shim, Shin-Cheol Song, Kyoungho Kim, Nam-Il Kim, Jinho Bae, Keum-Hyun So

Abstract:

The purpose of present paper was to investigate perceptions of Korean secondary school students about social issues related to biological sciences. Twenty issues were selected based on topics of articles in the newspaper from 2005 to 2010. The issues were categorized into biotechnology, health-disease and environment domains. Subjects were 541 high school students (male 253 and female 288). On the survey, students were asked to answer on 5-point Lickert scales how they thought of the effect of biological phenomena or events related to biological issues on the individual life and the society. They perceived that the biological issues would be more effectible on the society than on the individual life. Female students had a little more perceptions than males.

Keywords: biological issue, biological sciences, perception, secondary school

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
9308 Simulation on the Performance of Carbon Dioxide and HFC-125 Heat Pumpsfor Medium-and High-Temperature Heating

Authors: Young-Jin Baikand, Minsung Kim

Abstract:

In order to compare the performance of the carbon dioxide and HFC-125 heat pumps for medium-and high-temperature heating, both heat pump cycles were optimized using a simulation method. To fairly compare the performance of the cycles by using different working fluids, each cycle was optimized from the viewpoint of heating COP by two design parameters. The first is the gas cooler exit temperature and the other is the ratio of the overall heat conductance of the gas cooler to the combined overall heat conductance of the gas cooler and the evaporator. The inlet and outlet temperatures of secondary fluid of the gas cooler were fixed at 40/90°C and 40/150°C.The results shows that the HFC-125 heat pump has 6% higher heating COP than carbon dioxide heat pump when the heat sink exit temperature is fixed at 90ºC, while the latter outperforms the former when the heat sink exit temperature is fixed at 150ºC under the simulation conditions considered in the present study.

Keywords: Carbon dioxide, HFC-125, trans critical, heat pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
9307 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method

Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi

Abstract:

In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.

Keywords: Boundary conditions, buckling, non-local, the differential transform method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
9306 CFD Modeling of PROX Microreactor for Fuel Processing

Authors: M. Vahabi, M. H. Akbari

Abstract:

In order to investigate a PROX microreactor performance, two-dimensional modeling of the reacting flow between two parallel plates is performed through a finite volume method using an improved SIMPLE algorithm. A three-step surface kinetics including hydrogen oxidation, carbon monoxide oxidation and water-gas shift reaction is applied for a Pt-Fe/γ-Al2O3 catalyst and operating temperatures of about 100ºC. Flow pattern, pressure field, temperature distribution, and mole fractions of species are found in the whole domain for all cases. Also, the required reactive length for removing carbon monoxide from about 2% to less than 10 ppm is found. Furthermore, effects of hydraulic diameter, wall temperature, and inlet mole fraction of air and water are investigated by considering carbon monoxide selectivity and conversion. It is found that air and water addition may improve the performance of the microreactor in carbon monoxide removal in such operating conditions; this is in agreement with the pervious published results.

Keywords: CFD, Fuel Processing, PROX, Reacting Flow, SIMPLE algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
9305 Buckling Analysis of a Five-walled CNT with Nonlocal Theory

Authors: Alireza Bozorgian, Navid Majdi Nasab, Abdolreza Memari

Abstract:

A continuum model is presented to study vdW interaction on buckling analysis of multi-walled walled carbon nanotube. In previous studies, only the vdW interaction between adjacent two layers was considered and the vdW interaction between the other two layers was neglected. The results show that the vdW interaction cofficients are dependent on the change of interlayer spacing and the radii of tubes. With increase of radii the vdW coefficients approach a constant value. The numerical results show that the effect of vdW interaction on the critical strain for a doublewalled CNT is negligible when the radius is large enough for the both the cases of before and after buckling.

Keywords: Buckling, Carbon nanotube, van der Waals interaction, Multi-walled Carbon nanotube, Critical Strain, Prebuckling Pressure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
9304 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: Air cooling system, refrigeration, thermal ejector, thermal compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
9303 Traditional Ecological Knowledge System as Climate Change Adaptation Strategies for Mountain Community of Tangkhul Tribe in Northeast India

Authors: Tuisem Shimrah

Abstract:

One general agreement on climate change is that its causes may be local but the effects are global. Indigenous people are subscribed to “low-carbon” traditional ways of life and as such they have contributed little to causes of climate change. On the contrary they are the most adversely affected by climate change due to their dependence on surrounding rich biological wealth as a source of their livelihood, health care, entertainment and cultural activities This paper deals with the results of the investigation of various adaptation strategies adopted to combat climate change by traditional community. The result shows effective ways of application of traditional knowledge and wisdom applied by Tangkhul traditional community at local and community level in remote areas in Northeast India. Four adaptation measures are being presented in this paper.

Keywords: Climate change, adaptation, Tangkhul, traditional community, policy, Northeast India.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122
9302 A Condition Rating System for Wastewater Treatment Plants Infrastructures

Authors: Altayeb Qasem, Tarek Zayed, Zhi Chen

Abstract:

Statistics Canada stated that the wastewater treatment facilities in most provinces are aging and passes 63% of their useful life in 2007 the highest ratio among public infrastructure assets. Currently, there is no standard condition rating system for wastewater treatment plants that give a specific rating index that describe the physical integrity of different infrastructure elements in the treatment plant and its environmental performance. The main objective of this study is to develop a condition-rating index for wastewater treatment plants mainly activated sludge systems. The proposed WWTP CRI, is based on dividing the treatment plant into its three treatment phases; primary phase, secondary phase and the tertiary phase. The condition-rating index will reflect the infrastructures state for each phase, mainly tanks, pipes, blowers and pumps.

Keywords: Condition rating index, Wastewater treatment plants, AHP- MUAT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
9301 Preparation of Size Controlled Silver on Carbon from E-waste by Chemical and Electro-Kinetic Processes

Authors: Mahmoud A. Rabah

Abstract:

Preparation of size controlled nano-particles of silver catalyst on carbon substrate from e-waste has been investigated. Chemical route was developed by extraction of the metals available in nitric acid followed by treatment with hydrofluoric acid. Silver metal particles deposited with an average size 4-10 nm. A stabilizer concentration of 10- 40 g/l was used. The average size of the prepared silver decreased with increase of the anode current density. Size uniformity of the silver nano-particles was improved distinctly at higher current density no more than 20mA... Grain size increased with EK time whereby aggregation of particles was observed after 6 h of reaction.. The chemical method involves adsorption of silver nitrate on the carbon substrate. Adsorbed silver ions were directly reduced to metal particles using hydrazine hydrate. Another alternative method is by treatment with ammonia followed by heating the carbon loaded-silver hydroxide at 980°C. The product was characterized with the help of XRD, XRF, ICP, SEM and TEM techniques.

Keywords: e-waste, silver catalyst, metals recovery, electrokinetic process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
9300 Microwave Shielding of Magnetized Hydrogen Plasma in Carbon Nanotubes

Authors: Afshin Moradi, Mohammad Hosain Teimourpour

Abstract:

We derive simple sets of equations to describe the microwave response of a thin film of magnetized hydrogen plasma in the presence of carbon nanotubes, which were grown by ironcatalyzed high-pressure disproportionation (HiPco). By considering the interference effects due to multiple reflections between thin plasma film interfaces, we present the effects of the continuously changing external magnetic field and plasma parameters on the reflected power, absorbed power, and transmitted power in the system. The simulation results show that the interference effects play an important role in the reflectance, transmittance and absorptance of microwave radiation at the magnetized plasma slab. As a consequence, the interference effects lead to a sinusoidal variation of the reflected intensity and can greatly reduce the amount of reflection power, but the absorption power increases.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
9299 Bode Stability Analysis for Single Wall Carbon Nanotube Interconnects Used in 3D-VLSI Circuits

Authors: Saeed H. Nasiri, Rahim Faez, Bita Davoodi, Maryam Farrokhi

Abstract:

Bode stability analysis based on transmission line modeling (TLM) for single wall carbon nanotube (SWCNT) interconnects used in 3D-VLSI circuits is investigated for the first time. In this analysis, the dependence of the degree of relative stability for SWCNT interconnects on the geometry of each tube has been acquired. It is shown that, increasing the length and diameter of each tube, SWCNT interconnects become more stable.

Keywords: Bode stability criterion, Interconnects, Interlayer via, Single wall carbon nanotubes, Transmission line method, Time domain analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
9298 Carbon Isotope Discrimination, A Tool for Screening of Salinity Tolerance of Genotypes

Authors: Alireza Dadkhah, Mahmoud Ghorbanzadeh- Neghab

Abstract:

This study carried out in order to investigate the effects of salinity on carbon isotope discrimination (Δ) of shoots and roots of four sugar beet cultivars (cv) including Madison (British origin) and three Iranian culivars (7233-P12, 7233-P21 and 7233-P29). Plants were grown in sand culture medium in greenhouse conditions. Plants irrigated with saline water (tap water as control, 50 mM, 150 mM, 250 mM and 350 mM of NaCl + CaCl2 in 5 to 1 molar ratio) from 4 leaves stage for 16 weeks. Carbon isotope discrimination significantly decreased with increasing salinity. Significant differences of Δ between shoot and root were observed in all cvs and all levels of salinity. Madison cv showed lower Δ in shoot and root than other three cvs at all levels of salinity expect control, but cv 7233-P29 had significantly higher Δ values at saline conditions of 150 mM and above. Therefore, Δ might be applicable, as a useful tool, for study of salinity tolerance of sugar beet genotypes.

Keywords: Carbon isotope discrimination, Photosynthesis, Salt stress, Sugar beet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
9297 An Analysis of the Optimization Condition of Plasma Generator for Air Conditioner System

Authors: Arunrungrusmi S, Chaokamnerd W , Tanitteerapan T , Mungkung N., Yuji T.

Abstract:

This research aimed to develop plasma system used in air conditioners. This developed plasma system could be installed in the air conditioners - all split type. The quality of air could be improved to be equal to present plasma system. Development processes were as follows: 1) to study the plasma system used in the air conditioners, 2) to design a plasma generator, 3) to develop the plasma generator, and 4) to test its performance in many types of the air conditioners. This plasma system was developed by AC high voltage – 14 kv with a frequency of 50 kHz. Carbon was a conductor to generate arc in air purifier system. The research was tested by installing the plasma generator in the air conditioners - wall type. Whereas, there were 3 types of installations: air flow out, air flow in, and room center. The result of the plasma generator installed in the air conditioners, split type, revealed that the air flow out installation provided the highest average of o-zone at 223 mg/h. This type of installation provided the highest efficiency of air quality improvement. Moreover, the air flow in installation and the room center installation provided the average of the o-zone at 163 mg/h and 64 mg/h, respectively.

Keywords: Air Conditioner, Plasma generator, High voltage, Optimization, Installation position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
9296 Effect of Carbon Nanotube Reinforcement in Polymer Composite Plates under Static Loading

Authors: S. Madhu, V. V. Subba Rao

Abstract:

In the implementation of Carbon Nanotube Reinforced Polymer matrix Composites in structural applications, deflection and stress analysis are important considerations. In the present study, a multi scale analysis of deflection and stress analysis of carbon nanotube (CNT) reinforced polymer composite plates is presented. A micromechanics model based on the Mori-Tanaka method is developed by introducing straight CNTs aligned in one direction. The effect of volume fraction and diameter of CNTs on plate deflection and the stresses are investigated using classical laminate plate theory (CLPT). The study is primarily conducted with the intention of observing the suitability of CNT reinforced polymer composite plates under static loading for structural applications.

Keywords: Carbon Nanotube, Micromechanics, Composite plate, Multi-scale analysis, Classical Laminate Plate Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
9295 Microfluidic Paper-Based Electrochemical Biosensor

Authors: Ahmad Manbohi, Seyyed Hamid Ahmadi

Abstract:

A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R² > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method.

Keywords: Multiplex, microfluidic paper-based electrochemical biosensors, biomarkers, biological fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
9294 Capability Investigation of Carbon Sequestration in Two Species (Artemisia sieberi Besser and Stipabarbata Desf) Under Different Treatments of Vegetation Management (Saveh, Iran)

Authors: M. Alizadeh, M. Mahdavi, M.H. Jouri

Abstract:

The rangelands, as one of the largest dynamic biomes in the world, have very capabilities. Regulation of greenhouse gases in the Earth's atmosphere, particularly carbon dioxide as the main these gases, is one of these cases. The attention to rangeland, as cheep and reachable resources to sequestrate the carbon dioxide, increases after the Industrial Revolution. Rangelands comprise the large parts of Iran as a steppic area. Rudshur (Saveh), as area index of steppic area, was selected under three sites include long-term exclosure, medium-term exclosure, and grazable area in order to the capable of carbon dioxide’s sequestration of dominated species. Canopy cover’s percentage of two dominated species (Artemisia sieberi Besser & Stipa barbata Desf) was determined via establishing of random 1 square meter plot. The sampling of above and below ground biomass style was obtained by complete random. After determination of ash percentage in the laboratory; conversion ratio of plant biomass to organic carbon was calculated by ignition method. Results of the paired t-test showed that the amount of carbon sequestration in above ground and underground biomass of Artemisia sieberi Besser & Stipa barbata Desf is different in three regions. It, of course, hasn’t any difference between under and surface ground’s biomass of Artemisia sieberi Besser in long-term exclosure. The independent t-test results indicate differences between underground biomass corresponding each other in the studied sites. Carbon sequestration in the Stipa barbata Desf was totally more than Artemisia sieberi Besser. Altogether, the average sequestration of the long-term exclosure was 5.842gr/m², the medium-term exclosure was 4.115gr/m², and grazable area was 5.975gr/m² so that there isn’t valuable statistical difference in term of total amount of carbon sequestration to three sites.

Keywords: Carbon sequestration, the Industrial Revolution, greenhouse gases, Artemisia sieberi Besser, Stipa barbata Desf, steppic rangelands

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745