Effect of Carbon Nanotube Reinforcement in Polymer Composite Plates under Static Loading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Effect of Carbon Nanotube Reinforcement in Polymer Composite Plates under Static Loading

Authors: S. Madhu, V. V. Subba Rao

Abstract:

In the implementation of Carbon Nanotube Reinforced Polymer matrix Composites in structural applications, deflection and stress analysis are important considerations. In the present study, a multi scale analysis of deflection and stress analysis of carbon nanotube (CNT) reinforced polymer composite plates is presented. A micromechanics model based on the Mori-Tanaka method is developed by introducing straight CNTs aligned in one direction. The effect of volume fraction and diameter of CNTs on plate deflection and the stresses are investigated using classical laminate plate theory (CLPT). The study is primarily conducted with the intention of observing the suitability of CNT reinforced polymer composite plates under static loading for structural applications.

Keywords: Carbon Nanotube, Micromechanics, Composite plate, Multi-scale analysis, Classical Laminate Plate Theory.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091222

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359

References:


[1] S. Iijima, Nature, 354, 56 (1991).
[2] P. M. Ajayan and O. Z. Zhou, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Chap. 13, M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, eds., Springer-Verlag, Berlin (2000).
[3] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London (1999).
[4] C. A. Grimes, C. Mungle, D. Kouzoudis, S. Fang, and P. C. Eklund, Chem. Phys. Lett., 319, 460 (2000).
[5] B. S. Files and B. M. Mayeaux, Adv. Mater. Proc., 156, 47 (1999).
[6] P. M. Ajayan and L. S. Schadler, Polym. Prep., 42, 35 (2001).
[7] E. Barrera, JOM, 52, 38 (2000). 8. B. Maruyama and K. Alam, SAMPE J., 38(3), May/June, 59 (2002).
[8] A. Krishnana, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Phys. Rev.B, 58 (14) (1998) 14013.
[9] A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Comp. Sci. Technol., 62, 1993 (2002).
[10] J. Sandler, M. S. P. Shaffer, Y.-M. Lam, C.-A. Keun, J. Nastalczyk, G. Broza, K. Schulte, and A. H. Windle, http://www.msm.cam.ac.uk/ polymer/members/js364/js364Composites.pdf.
[11] Z. Jin, K. P. Pramoda, G. Xu, and S. H. Goh, Chem. Phys. Lett., 337, 43 (2001).
[12] C. Park, Z. Ounaies, K. A. Watson, K. Pawlowski, S. E. Lowther, J. W. Connell, E. J. Siochi, J. S. Harrison, and T. L. St. Clair, Making Functional Materials with Nanotubes Symposium, (Materials Research Society Symposium Proceedings, Vol 706), pp. 91_96 (2002).
[13] R. Vajtai, B. Q. Wei, Z. J. Zhang, Y. Jung, G. Ramanath, and P. M. Ajayan, Smart Mater. Struct., 11, 691 (2002).
[14] Odegard GM, Gates TS, Nicholson LM, Wise KE. Equivalent Continuum Modelling of Nano-Structured Materials. Compos Sci Technol 2002; 62: 1869–80.
[15] Liu YJ, Chen XL. Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element. Mech Mater 2003; 35: 69–81.
[16] Odegard GM, Gates TS, Wise KE, Park C, Siochi EJ. Constitutive Modelling of Nanotube-Reinforced Polymer Composites. Compos Sci Technol 2003; 63: 1671–87.
[17] Odegard GM, Pipes RB, Hubert P. Comparison of Two Models of SWCN Polymer Composites. Compos Sci Technol 2004; 64: 1011–20.
[18] Tserpes KI, Papnikos P. Finite Element Modelling of Single-Walled Carbon Nanotubes. Composites: Part B 2005; 36:468–77.
[19] Buryachenko VA, Roy A. Effective Elastic Moduli of Nanocomposites with Prescribed Random Orientation of Nanofibers. Composites: Part B 2005; 36: 405–16.
[20] Xiao JR, Gama BA, Gillespie Jr JW. An Analytical Molecular Structural Mechanics Model for the Mechanical Properties of Carbon Nanotubes. Int J Solids Struct 2005; 42: 3075–92.
[21] J. Wuite, S. Adali. Deflection and Stress Behavior of Nanocomposite Reinforced Beams Using a Multiscale Analysis. Composite Structures 71 (2005) 388-396.
[22] Shi DL, Feng XQ, Huang YY, Hwang KC, Gao H. The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites. J Eng Mater Technol 2004; 126:250–7.
[23] Popov VN, Doren VE, Balkanski M. Elastic Properties of Crystals of Single-Walled Carbon Nanotubes. Solid State Comm 2000; 114:359–99.
[24] Berthelot J-M. Composite Materials: Mechanical Behavior and Structural Analysis. New York: Springer-Verlag; 1999.
[25] J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second edition, CRC Press.