Nanocomputing Memory Devices Formed from Carbon Nanotubes and Metallofulleres
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Nanocomputing Memory Devices Formed from Carbon Nanotubes and Metallofulleres

Authors: Richard K. F. Lee, James M. Hill

Abstract:

In this paper, we summarize recent work of the authors on nanocomputing memory devices. We investigate two memory devices, each comprising a charged metallofullerene and carbon nanotubes. The first device involves two open nanotubes of the same radius that are joined by a centrally located nanotube of a smaller radius. A metallofullerene is then enclosed inside the structure. The second device also involves a etallofullerene that is located inside a closed carbon nanotube. Assuming the Lennard-Jones interaction energy and the continuum approximation, for both devices, the metallofullerene has two symmetrically placed equal minimum energy positions. On one side the metallofullerene represents the zero information state and by applying an external electrical field, it can overcome the energy barrier, and pass from one end of the tube to the other, where the metallofullerene then represents the one information state.

Keywords: Carbon nanotube, continuous approach, energy barrier, Lennard-Jones potential, metallofullerene, nanomemory device.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1084470

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464

References:


[1] G. E. Moore, "Progress in digital integrated electronics", Technical Digest International Electron Devices Meeting (1975), Vol. 21, pp.11-13.
[2] W. Arden and K. H. Muller, "Physical and technological limits in optical and x-ray lithography", Microelectron. Eng. (1987), Vol. 6, pp. 53-60.
[3] L. R. Harriott, "Limits of lithography", Proc. IEEE (2001), Vol. 89, pp. 366-374.
[4] T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy and M. Rothschild, "22-nm immersion interference lithography". Optics Express (2006), Vol. 14, pp. 6434-6443.
[5] S. E. Thompson and S. Parthasarathy S. "Moore's law: The future of Si microelectronics", Materials Today (2006), Vol. 9, pp. 20-25.
[6] P. V. Kamat and L. M. Liz-marzan, "Nanoscale materials" in Nanoscale Materials, Kluwer Academic Publishers, London, 2003.
[7] S. Iijima, "Helical microtubules of graphitic carbon", Nature (1991), Vol. 354, pp. 56-58.
[8] Y. K. Kwon, D. Tománek and S. Iijima, "Bucky shuttle memory device: Synthetic approach and molecular dynamics simulations", Phys. Rev. Lett., (1999), Vol. 82, No. 7, pp. 1470-1473.
[9] S. Xiao, D. R. Andersen and W. Yang, "Design and analysis of nanotube-based memory cells", Nanoscale Res. Lett. (2008), Vol. 3, pp. 416-420.
[10] J. Lee, H. Kim, S. J. Kahng, G. Kim, Y. W. Son, J. Ihm, H. Kato, Z. W. Wang, T. Okazaki, H. Shinohara and Y. Kuk, "Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes", Nature, (2002), Vol. 415, pp. 1005-1008.
[11] J. W. Kang and H. J. Hwang, "Carbon nanotube shuttle memory device", Carbon (2004), Vol. 42, pp. 3018-3021.
[12] Y. Chan, R. K. F. Lee and J. M. Hill, "Metallofullerenes in composite carbon nanotubes as a nanocomputing memory device", IEEE Trans. Nanotechnol. (2011), Vol. 10, pp. 947-952.
[13] H. J. Hwang, K. R. Byun, J. Y. Lee and J. W. Kang, "A nanoscale field effect data storage of bipolar endo-fullerenes shuttle device", Curr. Appl Phys. (2005), Vol. 5, pp. 609-614.
[14] R. K. F. Lee and J. M. Hill, "Design of a two-state shuttle memory device", CMC: Computers, Materials & Continua (2010), Vol. 20, No. 1, pp. 85-100.
[15] L. A. Girifalco, M. Hodak and R. S. Lee, "Carbon nanotubes buckyballs ropes and a universal graphitic potential", Phys. Rev. B (2000), Vol. 62, pp. 13104-13110.
[16] B. J. Cox, N. Thamwattana and J. M. Hill, "Mechanics of atoms and fullerenes in single-walled carbon nanotubes: I. Acceptance and suction energies", Proc. R. Soc. London, Ser. A (2007), Vol. 463, pp. 461-476.
[17] G. Chen, Y. Guo, N. Karasawa and W. A. Goddard III, "Electron-phonon interactions and superconductivity in K3C60", Phys. Rev. B (1993), Vol. 48, No. 18, pp. 13959.