Search results for: Aerospace applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2598

Search results for: Aerospace applications

348 Implementing a Visual Servoing System for Robot Controlling

Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari

Abstract:

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
347 Detection of Defects in CFRP by Ultrasonic IR Thermographic Method

Authors: W. Swiderski

Abstract:

In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW.

Keywords: Composite material, ultrasonic, infrared thermography, non-destructive testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
346 Computational Design of Inhibitory Agents of BMP-Noggin Interaction to Promote Osteogenesis

Authors: Shaila Ahmed, Raghu Prasad Rao Metpally, Sreedhara Sangadala, Boojala Vijay B Reddy

Abstract:

Bone growth factors, such as Bone Morphogenic Protein-2 (BMP-2) have been approved by the FDA to replace grafting for some surgical interventions, but the high dose requirement limits its use in patients. Noggin, an extracellular protein, blocks the effect of BMP-2 by binding to BMP. Preventing the BMP-2/noggin interaction will help increase the free concentration of BMP-2 and therefore should enhance its efficacy to induce bone formation. The work presented here involves computational design of novel small molecule inhibitory agents of BMP-2/noggin interaction, based on our current understanding of BMP-2, and its known putative ligands (receptors and antagonists). A successful acquisition of such an inhibitory agent of BMP-2/noggin interaction would allow clinicians to reduce the dose required of BMP-2 protein in clinical applications to promote osteogenesis. The available crystal structures of the BMPs, its receptors, and the binding partner noggin were analyzed to identify the critical residues involved in their interaction. In presenting this study, LUDI de novo design method was utilized to perform virtual screening of a large number of compounds from a commercially available library against the binding sites of noggin to identify the lead chemical compounds that could potentially block BMP-noggin interaction with a high specificity.

Keywords: Transforming growth factor-beta, Bone morphogenic proteins, Noggin, LUDI de novo design method, CAP small molecules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
345 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications

Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar

Abstract:

The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based    k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.

Keywords: Aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
344 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: Autonomous, indoor robot, mechatronic, omnidirectional robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
343 Oracle JDE Enterprise One ERP Implementation: A Case Study

Authors: Abhimanyu Pati, Krishna Kumar Veluri

Abstract:

The paper intends to bring out a real life experience encountered during actual implementation of a large scale Tier-1 Enterprise Resource Planning (ERP) system in a multi-location, discrete manufacturing organization in India, involved in manufacturing of auto components and aggregates. The business complexities, prior to the implementation of ERP, include multi-product with hierarchical product structures, geographically distributed multiple plant locations with disparate business practices, lack of inter-plant broadband connectivity, existence of disparate legacy applications for different business functions, and non-standardized codifications of products, machines, employees, and accounts apart from others. On the other hand, the manufacturing environment consisted of processes like Assemble-to-Order (ATO), Make-to-Stock (MTS), and Engineer-to-Order (ETO) with a mix of discrete and process operations. The paper has highlighted various business plan areas and concerns, prior to the implementation, with specific focus on strategic issues and objectives. Subsequently, it has dealt with the complete process of ERP implementation, starting from strategic planning, project planning, resource mobilization, and finally, the program execution. The step-by-step process provides a very good learning opportunity about the implementation methodology. At the end, various organizational challenges and lessons emerged, which will act as guidelines and checklist for organizations to successfully align and implement ERP and achieve their business objectives.

Keywords: ERP, ATO, MTS, ETO, discrete manufacturing, strategic planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
342 A Software-Supported Methodology for Designing General-Purpose Interconnection Networks for Reconfigurable Architectures

Authors: Kostas Siozios, Dimitrios Soudris, Antonios Thanailakis

Abstract:

Modern applications realized onto FPGAs exhibit high connectivity demands. Throughout this paper we study the routing constraints of Virtex devices and we propose a systematic methodology for designing a novel general-purpose interconnection network targeting to reconfigurable architectures. This network consists of multiple segment wires and SB patterns, appropriately selected and assigned across the device. The goal of our proposed methodology is to maximize the hardware utilization of fabricated routing resources. The derived interconnection scheme is integrated on a Virtex style FPGA. This device is characterized both for its high-performance, as well as for its low-energy requirements. Due to this, the design criterion that guides our architecture selections was the minimal Energy×Delay Product (EDP). The methodology is fully-supported by three new software tools, which belong to MEANDER Design Framework. Using a typical set of MCNC benchmarks, extensive comparison study in terms of several critical parameters proves the effectiveness of the derived interconnection network. More specifically, we achieve average Energy×Delay Product reduction by 63%, performance increase by 26%, reduction in leakage power by 21%, reduction in total energy consumption by 11%, at the expense of increase of channel width by 20%.

Keywords: Design Methodology, FPGA, Interconnection, Low-Energy, High-Performance, CAD tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
341 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD, as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches, such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: Autism spectrum disorder, clustering, optimization, unsupervised machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416
340 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: Stacking, multi-layers, ensemble, multi-class.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
339 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform

Authors: Chethana K., Guru Prasad A. S., Vikranth H. N., Varun H., Omkar S. N., Asokan S.

Abstract:

This paper describes a novel application of Fiber Braggs Grating (FBG) sensors in the assessment of human postural stability and balance on an unstable platform. In this work, FBG sensor Stability Analyzing Device (FBGSAD) is developed for measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. The studies are validated by comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer. The results obtained from the developed FBGSAD depict qualitative similarities with the data recorded by commercial accelerometer. The advantage of the FBGSAD is that it measures simultaneously plantar strain distribution and postural stability of the subject along with its inherent benefits like non-requirement of energizing voltage to the sensor, electromagnetic immunity and simple design which suits its applicability in biomechanical applications. The developed FBGSAD can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.

Keywords: Biomechanics, Fiber Bragg Gratings, Plantar Strain Measurement, Postural Stability Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847
338 A Software Framework for Predicting Oil-Palm Yield from Climate Data

Authors: Mohd. Noor Md. Sap, A. Majid Awan

Abstract:

Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.

Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
337 A Mobile Multihop Relay Dynamic TDD Scheme for Cellular Networks

Authors: Jong-Moon Chung, Hyung-Weon Cho, Ki-Yong Jin, Min-Hee Cho

Abstract:

In this paper, we present an analytical framework for the evaluation of the uplink performance of multihop cellular networks based on dynamic time division duplex (TDD). New wireless broadband protocols, such as WiMAX, WiBro, and 3G-LTE apply TDD, and mobile communication protocols under standardization (e.g., IEEE802.16j) are investigating mobile multihop relay (MMR) as a future technology. In this paper a novel MMR TDD scheme is presented, where the dynamic range of the frame is shared to traffic resources of asymmetric nature and multihop relaying. The mobile communication channel interference model comprises of inner and co-channel interference (CCI). The performance analysis focuses on the uplink due to the fact that the effects of dynamic resource allocation show significant performance degradation only in the uplink compared to time division multiple access (TDMA) schemes due to CCI [1-3], where the downlink results to be the same or better.The analysis was based on the signal to interference power ratio (SIR) outage probability of dynamic TDD (D-TDD) and TDMA systems,which are the most widespread mobile communication multi-user control techniques. This paper presents the uplink SIR outage probability with multihop results and shows that the dynamic TDD scheme applying MMR can provide a performance improvement compared to single hop applications if executed properly.

Keywords: Co-Channel Interference, Dynamic TDD, MobileMultihop Reply, Cellular Network, Time Division Multiple Access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
336 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies

Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani

Abstract:

The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a) synthesizing such PTMDs for particular applications and b) evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.

Keywords: Active tuned mass damper, high-rise building, multi-frequency tuning, vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130
335 Virtual Conciliation in Colombia: Evaluation of Maturity Level within the Framework of E-Government

Authors: Jenny Paola Forero Pachón, Sonia Cristina Gamboa Sarmiento, Luis Carlos Gómez Flórez

Abstract:

The Colombian government has defined an e-government strategy to take advantage of Information Technologies (IT) in order to contribute to the building of a more efficient, transparent and participative State that provides better services to citizens and businesses. In this regard, the Justice sector is one of the government sectors where IT has generated more expectation considering that the country has a judicial processes backlog. This situation has led to the search for alternative forms of access to justice that speed up the process while providing a low cost for citizens. To this end, the Colombian government has authorized the use of Alternative Dispute Resolution methods (ADR), a remedy where disputes can be resolved more quickly compared to judicial processes while facilitating greater communication between the parties, without recourse to judicial authority. One of these methods is conciliation, which includes a special modality that takes advantage of IT for the development of itself known as virtual conciliation. With this option the conciliation is supported by information systems, applications or platforms and communications are provided through it. This paper evaluates the level of maturity in how the service of virtual conciliation is under the framework of this strategy. This evaluation is carried out considering Shahkooh's 5-phase model for e-government. As a result, it is evident that in the context of conciliation, maturity does not reach the necessary level in the model so that it can be considered as virtual conciliation; therefore, it is necessary to define strategies to maximize the potential of IT in this context.

Keywords: Alternative dispute resolution, e-government, evaluation of maturity, Shahkooh model, virtual conciliation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
334 Cutting Propagation Studies in Pennisetum divisum and Tamarix aucheriana as Native Plant Species of Kuwait

Authors: L. Almulla

Abstract:

Native plants are better adapted to the local environment providing a more natural effect on landscape projects; their use will both conserve natural resources and produce sustainable greenery. Continuation of evaluation of additional native plants is essential to increase diversity of plant resources for greenery projects. Therefore, in this project an effort was made to study the mass multiplication of further native plants for greenery applications. Standardization of vegetative propagation methods is essential for conservation and sustainable utilization of native plants in restoration projects. Moreover, these simple propagation methods can be readily adapted by the local nursery sector in Kuwait. In the present study, various treatments were used to mass multiply selected plants using vegetative parts to secure maximum rooting and initial growth. Soft or semi-hardwood cuttings of selected native plants were collected from mother plants and subjected to different treatments. Pennisetum divisum can be vegetatively propagated by cuttings/off-shoots. However, Tamarix aucheriana showed maximum number of rooted cuttings and stronger vigor seedlings with the lowest growth hormone concentration. Standardizing the propagation techniques for the native plant species will add to the rehabilitation and landscape revegetation projects in Kuwait.

Keywords: Kuwait desert, landscape, rooting percentage vegetative propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
333 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: Auxetic fabrics, high performance, composites, impact resistance, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
332 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams

Authors: H. Ozbasaran

Abstract:

Lateral torsional buckling is a global buckling mode which should be considered in design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice for calculation ease which can be obtained by using energy method. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. Accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties and loading case, the hardest step is to determine a proper mode function in application of energy method. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for concentrated load at free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.

Keywords: Buckling mode, cantilever, lateral-torsional buckling, I-beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566
331 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.

Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201
330 Energy Efficient Plant Design Approaches: Case Study of the Sample Building of the Energy Efficiency Training Facilities

Authors: Idil Kanter Otcu

Abstract:

Nowadays, due to the growing problems of energy supply and the drastic reduction of natural non-renewable resources, the development of new applications in the energy sector and steps towards greater efficiency in energy consumption are required. Since buildings account for a large share of energy consumption, increasing the structural density of buildings causes an increase in energy consumption. This increase in energy consumption means that energy efficiency approaches to building design and the integration of new systems using emerging technologies become necessary in order to curb this consumption. As new systems for productive usage of generated energy are developed, buildings that require less energy to operate, with rational use of resources, need to be developed. One solution for reducing the energy requirements of buildings is through landscape planning, design and application. Requirements such as heating, cooling and lighting can be met with lower energy consumption through planting design, which can help to achieve more efficient and rational use of resources. Within this context, rather than a planting design which considers only the ecological and aesthetic features of plants, these considerations should also extend to spatial organization whereby the relationship between the site and open spaces in the context of climatic elements and planting designs are taken into account. In this way, the planting design can serve an additional purpose. In this study, a landscape design which takes into consideration location, local climate morphology and solar angle will be illustrated on a sample building project.

Keywords: Energy efficiency, landscape design, plant design, xeriscape landscape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
329 The Challenges and Solutions for Developing Mobile Apps in a Small University

Authors: Greg Turner, Bin Lu, Cheer-Sun Yang

Abstract:

As computing technology advances, smartphone applications can assist student learning in a pervasive way. For example, the idea of using mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. While working on the development of three heterogeneous mobile apps, we ran into numerous challenges. Both the traditional waterfall model and the more modern agile methodologies failed in practice. The waterfall model emphasizes the planning of the duration for each phase. When the duration of each phase is not consistent with the availability of developers, the waterfall model cannot be employed. When applying Agile Methodologies, we cannot maintain the high frequency of the iterative development review process, known as ‘sprints’. In this paper, we discuss the challenges and solutions. We propose a hybrid model known as the Relay Race Methodology to reflect the concept of racing and relaying during the process of software development in practice. Based on the development project, we observe that the modeling of the relay race transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the software development model. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future works are presented.

Keywords: Agile methods, mobile apps, software process model, waterfall model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
328 A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem

Authors: Sayyed R Mousavi

Abstract:

The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP. Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases.

Keywords: Bioinformatics, Far From Most Strings Problem, Hybrid metaheuristics, Matheuristics, Sequences consensus problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
327 Biosensor Design through Molecular Dynamics Simulation

Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang

Abstract:

The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structureprocess- property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.

Keywords: Biosensor, design, DNA, molecular dynamics simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3036
326 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
325 Experimental Investigation of the Influence of Cement on Soil-Municipal Solid Incineration Fly Ash Mix Properties

Authors: G. Aouf, D. Tabbal, A. Sabsabi, R. Aouf

Abstract:

The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out followed by analysis of results. Soil samples were prepared by adding cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density (MDD), and optimum moisture content (OMC) of clayey soil-MSWIFA. The variations of admixtures’ contents were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the Unconfined Compression Test values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.

Keywords: Clayey soil, cement, Municipal Solid Waste Incineration Fly Ash, MSWIFA, unconfined compression strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 348
324 A Study on Abnormal Behavior Detection in BYOD Environment

Authors: Dongwan Kang, Joohyung Oh, Chaetae Im

Abstract:

Advancement of communication technologies and smart devices in the recent times is leading to changes into the integrated wired and wireless communication environments. Since early days, businesses had started introducing environments for mobile device application to their operations in order to improve productivity (efficiency) and the closed corporate environment gradually shifted to an open structure. Recently, individual user's interest in working environment using mobile devices has increased and a new corporate working environment under the concept of BYOD is drawing attention. BYOD (bring your own device) is a concept where individuals bring in and use their own devices in business activities. Through BYOD, businesses can anticipate improved productivity (efficiency) and also a reduction in the cost of purchasing devices. However, as a result of security threats caused by frequent loss and theft of personal devices and corporate data leaks due to low security, companies are reluctant about adopting BYOD system. In addition, without considerations to diverse devices and connection environments, there are limitations in detecting abnormal behaviors, such as information leaks, using the existing network-based security equipment. This study suggests a method to detect abnormal behaviors according to individual behavioral patterns, rather than the existing signature-based malicious behavior detection, and discusses applications of this method in BYOD environment.

Keywords: BYOD, Security, Anomaly Behavior Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
323 Design of a 5-Joint Mechanical Arm with User-Friendly Control Program

Authors: Amon Tunwannarux, Supanunt Tunwannarux

Abstract:

This paper describes the design concepts and implementation of a 5-Joint mechanical arm for a rescue robot named CEO Mission II. The multi-joint arm is a five degree of freedom mechanical arm with a four bar linkage, which can be stretched to 125 cm. long. It is controlled by a teleoperator via the user-friendly control and monitoring GUI program. With Inverse Kinematics principle, we developed the method to control the servo angles of all arm joints to get the desired tip position. By clicking the determined tip position or dragging the tip of the mechanical arm on the computer screen to the desired target point, the robot will compute and move its multi-joint arm to the pose as seen on the GUI screen. The angles of each joint are calculated and sent to all joint servos simultaneously in order to move the mechanical arm to the desired pose at once. The operator can also use a joystick to control the movement of this mechanical arm and the locomotion of the robot. Many sensors are installed at the tip of this mechanical arm for surveillance from the high level and getting the vital signs of victims easier and faster in the urban search and rescue tasks. It works very effectively and easy to control. This mechanical arm and its software were developed as a part of the CEO Mission II Rescue Robot that won the First Runner Up award and the Best Technique award from the Thailand Rescue Robot Championship 2006. It is a low cost, simple, but functioning 5-Jiont mechanical arm which is built from scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont mechanical arm hardware concept and its software can also be used as the basic mechatronics to many real applications.

Keywords: Multi-joint, mechanical arm, inverse kinematics, rescue robot, GUI control program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
322 In Vitro Antibacterial and Antifungal Effects of a 30 kDa D-Galactoside-Specific Lectin from the Demosponge, Halichondria okadai

Authors: Sarkar M. A. Kawsar, Sarkar M. A. Mamun, Md S. Rahman, Hidetaro Yasumitsu, Yasuhiro Ozeki

Abstract:

The present study has been taken to explore the screening of in vitro antimicrobial activities of D-galactose-binding sponge lectin (HOL-30). HOL-30 was purified from the marine demosponge Halichondria okadai by affinity chromatography. The molecular mass of the lectin was determined to be 30 kDa with a single polypeptide by SDS-PAGE under non-reducing and reducing conditions. HOL-30 agglutinated trypsinized and glutaraldehydefixed rabbit and human erythrocytes with preference for type O erythrocytes. The lectin was subjected to evaluation for inhibition of microbial growth by the disc diffusion method against eleven human pathogenic gram-positive and gram-negative bacteria. The lectin exhibited strong antibacterial activity against gram-positive bacteria, such as Bacillus megaterium and Bacillus subtilis. However, it did not affect against gram-negative bacteria such as Salmonella typhi and Escherichia coli. The largest zone of inhibition was recorded of Bacillus megaterium (12 in diameter) and Bacillus subtilis (10 mm in diameter) at a concentration of the lectin (250 μg/disc). On the other hand, the antifungal activity of the lectin was investigated against six phytopathogenic fungi based on food poisoning technique. The lectin has shown maximum inhibition (22.83%) of mycelial growth of Botrydiplodia theobromae at a concentration of 100 μg/mL media. These findings indicate that the lectin may be of importance to clinical microbiology and have therapeutic applications.

Keywords: Antibacterial, Halichondria okadai, Inhibition zone, Lectin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
321 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
320 Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review

Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Azriszul Mohd Amin, Ahmad Mujahid Ahmad Zaidi, Saparudin Ariffin

Abstract:

Environmental awareness and depletion of the petroleum resources are among vital factors that motivate a number of researchers to explore the potential of reusing natural fiber as an alternative composite material in industries such as packaging, automotive and building constructions. Natural fibers are available in abundance, low cost, lightweight polymer composite and most importance its biodegradability features, which often called “ecofriendly" materials. However, their applications are still limited due to several factors like moisture absorption, poor wettability and large scattering in mechanical properties. Among the main challenges on natural fibers reinforced matrices composite is their inclination to entangle and form fibers agglomerates during processing due to fiber-fiber interaction. This tends to prevent better dispersion of the fibers into the matrix, resulting in poor interfacial adhesion between the hydrophobic matrix and the hydrophilic reinforced natural fiber. Therefore, to overcome this challenge, fiber treatment process is one common alternative that can be use to modify the fiber surface topology by chemically, physically or mechanically technique. Nevertheless, this paper attempt to focus on the effect of mercerization treatment on mechanical properties enhancement of natural fiber reinforced composite or so-called bio composite. It specifically discussed on mercerization parameters, and natural fiber reinforced composite mechanical properties enhancement.

Keywords: Mercerization treatment, mechanical properties, natural fiber and bio composite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4753
319 A BERT-Based Model for Financial Social Media Sentiment Analysis

Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe

Abstract:

The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural Language Processing (NLP) in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.

Keywords: BERT, financial markets, Twitter, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716