Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: BERT

3 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks

Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li

Abstract:

Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.

Keywords: BERT, chatbot, cryptocurrency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 454
2 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory

Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock

Abstract:

Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.

Keywords: Subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 365
1 Hacking's 'Between Goffman and Foucault': A Theoretical Frame for Criminology

Authors: Tomás Speziale

Abstract:

This paper aims to analyse how Ian Hacking states the theoretical basis of his research on the classification of people. Although all his early philosophical education had been based in Foucault, it is also true that Erving Goffman’s perspective provided him with epistemological and methodological tools for understanding face-to-face relationships. Hence, all his works must be thought of as social science texts that combine the research on how the individuals are constituted ‘top-down’ (as in Foucault), with the inquiry into how people renegotiate ‘bottom-up’ the classifications about them. Thus, Hacking´s proposal constitutes a middle ground between the French Philosopher and the American Sociologist. Placing himself between both authors allows Hacking to build a frame that is expected to adjust to Social Sciences’ main particularity: the fact that they study interactive kinds. These are kinds of people, which imply that those who are classified can change in certain ways that prompt the need for changing previous classifications themselves. It is all about the interaction between the labelling of people and the people who are classified. Consequently, understanding the way in which Hacking uses Foucault’s and Goffman’s theories is essential to fully comprehend the social dynamic between individuals and concepts, what Bert Hansen had called dialectical realism. His theoretical proposal, therefore, is not only valuable because it combines diverse perspectives, but also because it constitutes an utterly original and relevant framework for Sociological theory and particularly for Criminology.

Keywords: Classification of people, Foucault`s archaeology, Goffman`s interpersonal sociology, interactive kinds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714