Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30077
In Vitro Antibacterial and Antifungal Effects of a 30 kDa D-Galactoside-Specific Lectin from the Demosponge, Halichondria okadai

Authors: Sarkar M. A. Kawsar, Sarkar M. A. Mamun, Md S. Rahman, Hidetaro Yasumitsu, Yasuhiro Ozeki


The present study has been taken to explore the screening of in vitro antimicrobial activities of D-galactose-binding sponge lectin (HOL-30). HOL-30 was purified from the marine demosponge Halichondria okadai by affinity chromatography. The molecular mass of the lectin was determined to be 30 kDa with a single polypeptide by SDS-PAGE under non-reducing and reducing conditions. HOL-30 agglutinated trypsinized and glutaraldehydefixed rabbit and human erythrocytes with preference for type O erythrocytes. The lectin was subjected to evaluation for inhibition of microbial growth by the disc diffusion method against eleven human pathogenic gram-positive and gram-negative bacteria. The lectin exhibited strong antibacterial activity against gram-positive bacteria, such as Bacillus megaterium and Bacillus subtilis. However, it did not affect against gram-negative bacteria such as Salmonella typhi and Escherichia coli. The largest zone of inhibition was recorded of Bacillus megaterium (12 in diameter) and Bacillus subtilis (10 mm in diameter) at a concentration of the lectin (250 μg/disc). On the other hand, the antifungal activity of the lectin was investigated against six phytopathogenic fungi based on food poisoning technique. The lectin has shown maximum inhibition (22.83%) of mycelial growth of Botrydiplodia theobromae at a concentration of 100 μg/mL media. These findings indicate that the lectin may be of importance to clinical microbiology and have therapeutic applications.

Keywords: Antibacterial, Halichondria okadai, Inhibition zone, Lectin.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925


[1] Goldstein, I. J. (2002). Lectin structure-activity: the story is never over. J Agric Food Chem, 50, 6583-6585.
[2] Vazquez, L., Alpuche, J., Maldonado, G., Agundis, C., Morales, A. P., and Zenteno, E. (2009). Immunity mechanisms in crustaceans. Innate Immun, 15, 179-188.
[3] Gabius, H. J., Unverzagt, C., and Kayser, K. (1998). Beyond plant lectin histochemistry: preparation and application of markers to visualize the cellular capacity for protein-carbohydrate recognition. Biotech Histochem 73, 263-277.
[4] Stabili, I., Pagliara, P., and Roch, P. (1996). Antibacterial activity in the coelomocytes of the sea urchin Paracentrotus lividus. Comp Biochem Physiol, 113B, 639-644.
[5] Wang, C., Wang, Y., Huffman, N. T., Cui, C., Yao, X., and Midura, S. (2009). Confocal laser raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem, 284, 7100-7113.
[6] Mali, B., Ried, J. S., Frohme, M., and Frank, U. (2006). Structural but not functional conservation of an immune molecule: a tachylectin-like gene in Hydractinia. Dev Comp Immunol, 30, 275-281.
[7] Kvennefors, E. C. E., Leggat, W., Guldberg, O. H., Degan, B. M., and Barnes, A. C. (2008). An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev Comp Immunol, 32, 1582-1592.
[8] Canesi, L., Gallo, G., Gavioli, M., and Pruzzo, C. (2002). Bacteriahemocyte interactions and phagocytosis in marine bivalves. Microbe Res Tech, 57, 469-476.
[9] Austin, B. (1988). Marine Microbiology. University Press, Cambridge, U. K., 166-171.
[10] Muller, W. E. G. (2001). How was metazoan threshold crossed: the hypothetical Urmetazoan. Comp Biochem Physiol, 129A, 433-460.
[11] Vogel, S. (1977). Current-induced flow through living sponges in nature. Proc Natl Acad Sci, 74, 2069-2071.
[12] Gonzales, J. M., and Moran, M. A. (1997). Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol, 63, 4237-4242.
[13] Proksch, P. (1994). Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon, 32, 639-655.
[14] Muller, W. E. G., Blumbach, B., and Muller, I. M. (1999). Evolution of the innate and adaptive immune systems: Relationships between Potential Immune Molecules in the Lowest Metazoan Phylum and Those in Vertebrates1. Transplantation, 68, 1215-1227.
[15] Bretting, H., Jacobs, G., Donadey, C., and Vacelet, J. (1983). Immunohistochemical studies on the distribution and the function of the D-galactose-specific lectins in the sponge Axinella polypoides (Schmidt). Cell Tiss Res, 229, 551-571.
[16] Schroder, H. C., Ushijima, H., Krasko, A., Gamulin, V., Thakur, N. L., Diehl-Seifert, B., Muller, I. M., and Muller, W. E. G. (2003). Emergence and disappearance of an immune molecule, an antibacterial lectin, in basal metazoan; A tachylectin-related protein in the sponge Suberites domuncula. J Biol Chem, 278, 32810 -32817.
[17] Tachibana, K., Scheuer, P. J., Tsukitani, Y., Kikuchi, H., Engen, D. V., et al. (1981). Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc, 103, 2469-2471.
[18] Kawagishi, H,. Yamawaki, M., Isobe, S., Usui, T., Kimura, A., and Chiba, S. (1994). Two lectins from the marine sponge Halichondria okadai: an N-acetyl-sugar-specific lectin (HOL-I) and an Nacetyllactosamine- specific lectin (HOL-II). J Biol Chem, 269, 1375- 1379.
[19] Kawsar, S. M. A., Fujii, Y., Matsumoto, R., Ichikawa, T., Tateno, H., Hirabayashi, J., et al. (2008). Isolation, purification, characterization and glycan-binding profile of a D-galactoside specific lectin from the marine sponge, Halichondria okadai. Comp Biochem Physiol, 150B, 349-357.
[20] Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Anal Biochem , 150, 76-85.
[21] Wiechelman, K. J., Braun, R. D., and Fitzpatrick, J. D. (1988). Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem, 175, 231-237.
[22] Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature, 227, 680-685.
[23] Matsui, T. (1984). D-galactoside specific lectins from coelomocytes of the echiuran, Urechis unicinctus. Biol Bull, 166, 178-188.
[24] Bauer, A. W., Kirby, M. M., Sherris, J. C., and Turck, M. (196). Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Path, 45, 493-496.
[25] Grover, R. K., and Moore, J. D. (1962). Toximetric studies of fungicides against the brown rot organisms, Sclerotinia fructicola and S. laxa. Phytopathology, 52, 876-880.
[26] Miah, M. A.T., Ahmed, H. U., Sharma, N. R., Ali, A., and Miah, S. A. (1990). Antifungal activity of some plant extracts. Bang J Bot, 19, 5-10.
[27] Pfeifer, K., Haasemann, M., Gamulin, V., Bretting, H., Fahrenholz, F., and Muller, W. E. G. (1993). S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology, 3, 179- 184.
[28] Schroder, H. C., Boreiko, A., Korzhev, M., Tahir, M. N., Tremel, W., Eckert, C., Ushijima, H., Muller, I. M., and Muller, W. E. G. (2006). Coexpression and functional interaction of silicatein with galectin: matrixguided formation of siliceous spicules in the marine demosponge, Suberites domuncula. J Biol Chem, 281, 12001-12009.
[29] Miarons, P. B., and Fresno, M. (2000). Lectins from tropical sponges; purification and characterization of lectins from genus Aplysina. J Biol Chem, 275, 29283-29289.
[30] Kurata, O., and Hatai, K. (2002). Activation of carp leukocytes by a galactose-binding protein from Aphanomyces piscicida. Dev Comp Immunol, 26, 461-469.
[31] Oliveira, M. D. L., Andrade, C. A. S., Magalhaes, N. S. S., Coelho, L. C. B. B., etal. (2008). Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity. Lett Appl Microbiol, 46, 371-376.
[32] Broekaert, W. F., Van, P. J., Leyn, F., Joos, H., and Peumans, W. (1998). A chitin-binding lectin from stinging rettle rhizomes with antifungal properties. Science, 245, 1100-1102.
[33] Dhainaut, A., and Scaps, P. (2001). Immune defense and biological responses induced by toxics in Annelida. Can J Zool, 79, 233-253.
[34] Paul, V. J., and Puglisi, M. P. (2004). Chemical mediation of interactions among marine organisms. Nat Prod Rep, 21, 189-209.
[35] Kelly, S. R., Garo, E., Jensen, P. R., Fenical, W., and Pawlik, J. R. (2005). Effects of caribbean sponge secondary metabolites on bacterial surface colonization. Aquat Microb Ecol, 40, 191-203.