
 

 

 

Abstract—Artificial Intelligence (AI), specifically Reinforcement 
Learning (RL), has proven helpful in many control path planning 
technologies by maximizing and enhancing their performance, such as 
navigation systems. Since it learns from experience by interacting with 
the environment to determine the optimal policy, the optimal policy 
takes the best action in a particular state, accounting for the long-term 
rewards. Most navigation systems focus primarily on "arriving faster," 
overlooking safety and efficiency while estimating the optimum path, 
as safety and efficiency are essential factors when planning for a long-
distance journey. This paper represents an RL control model that 
proposes a control mechanism for improving navigation systems. Also, 
the model could be applied to other control path planning applications 
because it is adjustable and can accept different properties and 
parameters. However, the navigation system application has been 
taken as a case and evaluation study for the proposed model. The 
model utilized a Q-learning algorithm for training and updating the 
policy. It allows the agent to analyze the quality of an action made in 
the environment to maximize rewards. The model gives the ability to 
update rewards regularly based on safety and efficiency assessments, 
allowing the policy to consider the desired safety and efficiency 
benefits while making decisions, which improves the quality of the 
decisions taken for path planning compared to the conventional RL 
approaches. 

  
Keywords—Artificial intelligence, control system, navigation 

systems, reinforcement learning.  

I. INTRODUCTION 

AVIGATION systems have been used for a long time, 
beginning with the magnetic compass, and progressing to 

the present with global positioning system technology (GPS). 
However, most navigation systems prioritize “arriving faster” 
[1], [2] while ignoring important safety and efficiency 
considerations. Arriving in a short time interval is a complex 
and vital subject for any navigation system. Yet, keeping safety 
and efficiency in mind is critical.  

Some drivers have limited abilities, such as an impaired 
vision, and others require hospital access when traveling from 
one location to another, particularly on long-distance trips. For 
example, some older drivers dread driving in adverse weather 
conditions such as rain because it poses a significant safety risk 
to them. According to the Federal Highway Administration - 
Department of Transportation in the United States (U.S.), every 
year, around 5,891,000 automobiles are involved in accidents. 
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Weather accounts for around 21% of these crashes (almost 
1,235,000). Weather-related accidents can occur in weather 
conditions such as rain, sleet, snow, fog, strong crosswinds, or 
blowing snow/sand/debris. Approximately 5,000 individuals 
are killed, and over 418,000 are injured in weather-related 
crashes each year [3]. 

In terms of efficiency, especially for Electrical Vehicle (EV) 
drivers. As mentioned early, the navigation systems focus on 
arriving faster, which does not explicitly mean short distances 
or less energy consumption. Therefore, EV drivers might face 
some charging challenges for long distance travel. Even though 
EVs are becoming increasingly popular, as in 2021, the global 
sales of electric vehicles reached 6.6 million, accounting for 
about 9% of the global car market [4]. Also, according to the 
International Energy Agency (IEA), EV sales are expanding 
exponentially, exceeding 10 million by 2022. EV sales have 
tripled in three years, reaching roughly 4% in 2020 to 14% in 
2022 of the global sales (see Fig. 1) [5]. 

So, EV drivers need to consider some features while planning 
their trips, like charging stations and avoiding roads that 
consume more energy, such as congested traffic or mountain 
driving, which also applies to gas vehicles. However, EV 
charging is more challenging compared to a gas fill-up, since 
EV charging takes more time. For instance, DC fast charging 
technology is currently the fastest. It requires a 480-volt 
connection, making DC charging impractical to use in homes, 
and it is not available on all-electric car models; it contributes 
up to 10 miles of range every minute of charging time, 
depending on battery type, charger arrangement, and circuit 
capacity. That is about 40 minutes for a 400-mile trip [6]. 
Unfortunately, the present navigation systems primarily focus 
on arriving faster (shortest time). The drivers could use some 
manual steps to make sure their needs are met, for example, 
searching for nearby EV stations along the way and then adding 
it as "Add a Stop" or using Apps separately from the 
navigations system like ChargePoint, Evgo, or PlugShare to 
adjust their trip plans based on the EV station locations.  

RL mimics how humans and animals naturally learn the 
optimal behavior in an environment to obtain the maximum 
rewards. As an example from nature that illustrates accounting 
for safety and efficiency, a female European honey buzzard bird 
equipped with a satellite tracking system made a journey from 
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South Africa to Finland. The bird traveled almost 10,000 
kilometers at a 230 km/day speed in about 42 days [7]. 
Interestingly, the bird took safety and efficiency under 
consideration, as it avoided the Mediterranean Sea and the 

desert along the way (unsafe regions) and followed the Nile 
River in case of getting thirsty (fuel efficiency). Fig. 2 shows 
the bird’s map journey.  

 

 

Fig. 1 Electrical car sales, 2016 – 2023 [5] 
 

 

Fig. 2 Bird's path journey 

Consistent with the previous discussions, this paper presents 
an RL model with more control ability to improve the 
navigation system and take more features like safety and 
efficiency under consideration while generating the navigation 
path.     

II. LITERATURE REVIEW 

This section will review three topics in the literature using 
RL methods in path planning and compare them with the 
proposed model.   

A. Trajectory Optimization Using RL 

 Trajectory optimization is a common problem in the RL 
field, and successful results have been obtained [8]. Fig. 3 
shows two trajectories. However, in these attempts, safety and 
efficiency are not considered while generating the optimal path, 
and neither does the user have preferences (like smooth road 
conditions). So, the exploring algorithm will find the shortest 
trajectory without considering realistic and essential features 
such as safety. 

B. Q-Learning for Path Planning 

Q-learning is a popular algorithm for path planning due to its 
self-learning without requiring a priori model of the 
environment, and eventually has been developed to accelerate 
its performance [9], [10].  
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Fig. 3 Example of worst trajectory and best trajectory [8] 
 

 

Fig. 4 Results of different types of Q-learning for path planning 
control [9] 

 
However, these techniques consider two significant states in 

path planning: “start state” and “goal state.” That means the 
agent (which can be a robot, a drone, or a car) will start its 
position from the “start state” and proceed to the end destination 
“goal state.” In the middle, there might be “obstacles” that the 
agent will avoid altogether, and it does not matter what the 
obstacles are  such as a bump or a light standard. However, with 
the proposed model, the agent differentiates between obstacles, 
and does not maneuver a specific position unless it is highly 
unsafe or has a high efficiency cost. 

C. Geometric RL for Path Planning 

Newly developed RL methods in the literature assist with 
path planning while enhancing safety. For example in [11], the 
geometric RL algorithm is used for Unmanned Aerial Vehicles 
(UAV). It effectively produced good results by allowing a 
drone to avoid dangerous areas, where dangerous areas could 
include towering structures or electrical transformer stations. 

 

𝐴 , 𝑑 , 𝐾 𝐹 𝑥, 𝑦  𝑑𝑠     (1) 

 
Equation (1) is a part of a developed algorithm called 

geometric reinforcement learning (GRL), where C is the point 
set on the path from p1 to p2. dp1 and dp2 are the distance 
between p1 and p2, and K is the size of threaten parameter that 
influences the weight between two locations [11]. As K 
increases the agent will have smaller risk by increasing the 
distance from the unsafe region. Fig. 5 shows some of the 
results of the K parameter’s effect. In general, their procedure 
is described as follows:  
1. Randomly select start point prm, and m ⊂ Smap 
2. Randomly choose target point prn, with n ⊂SPT Pr1 
3. Then calculate Aprm,prn as (𝐴 , 𝑑 ,

𝐾 𝐹 𝑥, 𝑦  𝑑𝑠  to get A matrix.  

4. Repeat above steps 1–3 until the learning is complete.  
The agent (drone) successfully avoids the unsafe zone, but 

all the unsafe zones have the same level of risk. However, in the 
proposed model, the risk level can vary from zone to zone, and 
the agent will respond differently based on the zone’s risk level.  

III. BACKGROUND 

A. Reinforcement Learning 

RL, a general class of Machine Learning (ML), is highly 
influenced by the theory of Markov Decision Processes (MDP) 
[12]. Also, RL can be described as a feedback-based ML 
approach in which an agent is trained on how to behave in a 
given environment by executing actions and observing the 
outcomes of those actions, as the agent's goal is to maximize 
the long-term cumulative rewards. 
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Fig. 5 Different values of the threaten parameter (K) left result with K=20 and the right result with K=100 [11] 
 

General Terms in RL  

 Agent: Component that is trained to make the optimal 
decisions.  

 Environment: The system/plant that the agent interacts 
with as the environment dynamically changes based on the 
agent’s actions and environment’s nature.  

 Action (𝑎 : The decision that the RL made to change the 
environment states. 

 State (𝑠 : The representation or the position of the 
environment. 

 Reward (𝑟 : A response from the environment that the 
agent received to assess its performance. 

 Policy (𝜋 : The strategy that the agent follows when 
making decisions. 

 Q-value (𝑞 𝑠, 𝑎 ): The estimation of the expected 
cumulative reward of taking a particular action in a given 
state.  

 

 

Fig. 6 The RL framework [13] 

B. Q-Learning Algorithm 

Q-learning methods train the Q-function by iteratively 
applying Bellman-optimality [14], see (2): 

 
q s, a  E R   γ max q s , a       (2) 

 
Q-learning is an off-policy algorithm [14], which lets the 

proposed model achieve the most feasible result while not being 
bound by a policy that may not allow for the same optimization 

level. Moreover, it allows for more exploration of a given map. 
In addition, it is a model-free algorithm [15], so it does not 
require prior knowledge about an environment, as Q-learning 
learns about the environment while training and interacting 
with the environment. Also, this allows the model to be applied 
to various applications when the underlying dynamics of an 
environment are unknown. The algorithm is represented in (3) 
and can refer to the proof of convergence toward the optimality 
as in [14], [16].   

 
Q s, a Q s, a α R s, a γ max Q s , a Q s, a   (3) 

IV. MODEL METHODOLOGY 

The main goal of the model is to guarantee safety and 
efficiency while choosing the best decision. In this paper, safety 
can be described as rain or storms (poor weather conditions), a 
crime scene, or a political protest area, especially if it is 
unorganized. Efficiency can be represented as EV charge 
stations along the path, or a less mountainous path. A 
navigation system was taken to validate and evaluate the 
proposed model. This approach can thus be used for additional 
control planning applications such as surgical robots or drone 
delivery. Therefore, the safety and efficiency criteria of the 
model can be adjusted based on the application, available data 
access, and the user's perspective.   

A. Model Schematic 

The suggested methodology allows the RL model to verify 
safety and efficiency criteria and, based on the results, adjust 
the rewards to match the desired performance. As a result, the 
best policy balances safety and efficiency while making the best 
decisions. Fig. 7 depicts a high-level overview of the suggested 
paradigm. 

B. Model Functionality 

The model will first gather observations from the 
environment and then store them as numerical data in a reward 
matrix. Following that, it will check for safety and efficiency 
standards, and based on the results, it will update the reward 
matrix. Then, a q-learning matrix will be initialized with zeros 
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and updated iteratively using the q-learning algorithm until 
convergence. After creating the q-learning matrix/table, the 
policy will take the q-learning optimal actions. Fig. 8 depicts a 
diagram of the model's functionality. 

 

 

Fig. 7 Model schematic 

V. EXPERIMENTAL SETUP 

The experiment was designed for path planning, going from 
Tucson, Arizona to Los Angeles, California as an example for 
the proposed model. 

A. Creating the RL - Environment  

The first step was examining the best route options using 
Google Map as in Fig. 9. Then, the change routes have been 
identified as shown in Fig. 10. Following that, the map was 
created using Python. Fig. 11 shows the output with the 
weighted distance from each route change. 

 

 

Fig. 8 Model's functionality diagram 
 

 

 

Fig. 9 Best route options from Tucson to Los Angeles 
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Fig. 10 Identifying change routes 
 

 

Fig. 11 Output map with distances 

B. Training the Agent  

The agent was trained via the q-learning algorithm for each 
run; Fig. 12 is one sample result of 1000 training episodes. The 
sample shows how the q value increased until convergence.  

 

 

Fig. 12 Training sample 

VI. TESTING AND EVALUATING 

A. Testing the Model without Safety and Efficiency Features 

First, the model was tested without any safety and efficiency 
checks, and it simply found the shortest path, around 486 miles. 

the optimal path is colored as blue nodes for clarification in Fig. 
13.  

 

 

Fig. 13 Performance test without any safety or efficiency checks 
 

TABLE I 
Q-TABLE OF PERFORMANCE TEST WITHOUT SAFETY OR EFFICIENCY CHECK 

 0 1 2 3 4 5 6 

0 0.0000 0.6088 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.5419 0.0000 0.6855 0.6896 0.0000 0.0000 0.0000

2 0.0000 0.5906 0.0000 0.0000 0.7887 0.7873 0.0000

3 0.0000 0.6080 0.0000 0.0000 0.7750 0.0000 0.0000

4 0.0000 0.0000 0.6989 0.6731 0.0000 0.0000 0.8871

5 0.0000 0.0000 0.6987 0.0000 0.0000 0.0000 0.8883

6 0.0000 0.0000 0.0000 0.0000 0.7819 0.7878 1.0000

 

Table I shows how the agent chooses the optimal actions. 
Table I is a normalized version of the original Q-table for better 
visualization and analysis, and presents the values as 
probabilities between 0 and 1. Looking at the table, when the 
agent is in state 1 (intersection), the agent has three action 
options: either go back to state 0 (Tucson) by 0.541, go to state 
2 (El Centro) by 0.685, or go to state 3 (Phoenix) by 0.689. 
Therefore, the agent will choose the maximum value that goes 
to Phoenix. However, the agent did not choose that due to the 
short distance between the intersection and Phoenix. This 
means that if the agent only follows the short distance 
(minimum cost), it would rather go back to Tucson since it has 
60 miles rather than 68 miles (going to Phoenix). Indeed, q-
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table values are based on the cumulative long-term reward 
toward the goal state 6 (Los Angeles).  

B. Testing the Model with Safety Feature 

The model in this section was examined by assuming there is 
a rainstorm in Phoenix, as the model showed a robust and 
resilient result by avoiding the rainstorm region (unsafe zone) 
and following the shortest path. So, when the safety check is 
enabled, it updates the reward matrix with negative rewards of 
the undesired place, as the policy follows the desired 
performance. Fig. 14 shows the result.  

 

 

Fig. 14 Performance test with safety check 
 

Table II showed how the agent chose the best action by going 
to El Centro with a q value of 0.685 rather than Phoenix, whose 
the q value decreased from 0.689 to 0.670 due to the safety 
check. 

 
TABLE II 

Q-TABLE OF PERFORMANCE TEST WITH SAFETY CHECK ONLY 
 0 1 2 3 4 5 6 

0 0.0000 0.6107 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.5436 0.0000 0.6853 0.6703 0.0000 0.0000 0.0000

2 0.0000 0.5911 0.0000 0.0000 0.7884 0.7851 0.0000

3 0.0000 0.5898 0.0000 0.0000 0.7636 0.0000 0.0000

4 0.0000 0.0000 0.7010 0.6438 0.0000 0.0000 0.8871

5 0.0000 0.0000 0.6984 0.0000 0.0000 0.0000 0.8876

6 0.0000 0.0000 0.0000 0.0000 0.7841 0.7846 1.0000

 

C. Testing the Model with Safety and Efficiency Features 

The model in this section was examined by enabling an 
efficiency check, assuming the driver is using an electric 
vehicle and there are EV charge stations in San Diego and none 
in El Centro and Indio. The model gave good results by 
following the efficiency desires with the safest path (avoiding 
the rainstorm in Phoenix and passing through San Diego for the 
EV charge). Fig. 15 shows the optimal path. 

Note that in state 2 (El Centro), the agent chooses to pass 
through San Diego (taking action 5) by 0.806 rather than going 
through Indio (taking action 4) by 0.789. Therefore, the San 
Diego q value increased due to the efficiency check.   

 

 

Fig. 15 Performance test with safety and efficiency check 
 

TABLE Ⅲ 
Q-TABLE OF PERFORMANCE TEST WITH SAFETY AND EFFICIENCY CHECK 

 0 1 2 3 4 5 6 

0 0.0000 0.6256 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.5570 0.0000 0.7019 0.6716 0.0000 0.0000 0.0000

2 0.0000 0.6075 0.0000 0.0000 0.7898 0.8068 0.0000

3 0.0000 0.6047 0.0000 0.0000 0.7650 0.0000 0.0000

4 0.0000 0.0000 0.7175 0.6450 0.0000 0.0000 0.8871

5 0.0000 0.0000 0.7352 0.0000 0.0000 0.0000 0.8984

6 0.0000 0.0000 0.0000 0.0000 0.7856 0.8109 1.0000

VII. DIFFERENT LEVEL VALUES OF RISK AND EFFICIENCY  

In this section, the model will be demonstrated with different 
levels of risk and efficiency to show its robustness, and it can 
be adjusted to be more applicable toward its applied 
application. 

A. Low Risk Level 

An assumption is that there is a drizzle in Indio (lower risk) 
with a risk value of -20 and rain in El Centro (higher risk) with 
a risk value of -30. Moreover, there are EV charge stations in 
San Diego with a positive value of 30. Due to the efficiency 
value, the model let the agent plan to pass through El Centro, 
taking the rain risk for the efficiency rewards. Fig. 16 and Table 
Ⅳ show the results.   

 

 

Fig. 16 Performance test with different risk and efficiency level 
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TABLE Ⅳ 
Q-TABLE OF PERFORMANCE TEST WITH RISK TAKING FOR EFFICIENCY 

REWARDS 
 0 1 2 3 4 5 6 

0 0.0000 0.6101 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.5431 0.0000 0.6847 0.6843 0.0000 0.0000 0.0000

2 0.0000 0.5859 0.0000 0.0000 0.7829 0.7911 0.0000

3 0.0000 0.6089 0.0000 0.0000 0.7712 0.0000 0.0000

4 0.0000 0.0000 0.6953 0.6637 0.0000 0.0000 0.8851

5 0.0000 0.0000 0.7039 0.0000 0.0000 0.0000 0.8914

6 0.0000 0.0000 0.0000 0.0000 0.7797 0.7934 1.0000
 

Looking at the Intersection (state 1), the q-value for choosing 
Phoenix (action 3) and El Centro (action 2) was very close.   

B. High Risk Level 

The level of risk in El Centro was increased from -30 to -50, 
and other parameters were kept as before. As Fig. 17 and Table 
V show, the model decided to go through Phoenix (q value of 
0.687), passing through the low level of risk in Indio while 
avoiding the high risk in El Centro. In addition, the model 
neglected the efficiency rewards (EV stations) in San Diego due 
to the high risk in El Centro as the goal state (final destination) 
is going to Los Angeles. 

 

 

Fig. 17 Performance Test with Different Risk and Efficiency Level 
 

TABLE V 
Q-TABLE OF PERFORMANCE TEST WITH HIGH-RISK AVOIDING AND 

NEGLECTING EFFICIENCY REWARDS 

 0 1 2 3 4 5 6 

0 0.0000 0.6124 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.5437 0.0000 0.6808 0.6871 0.0000 0.0000 0.0000

2 0.0000 0.5827 0.0000 0.0000 0.7787 0.7888 0.0000

3 0.0000 0.6100 0.0000 0.0000 0.7715 0.0000 0.0000

4 0.0000 0.0000 0.6876 0.6668 0.0000 0.0000 0.8852

5 0.0000 0.0000 0.6999 0.0000 0.0000 0.0000 0.8914

6 0.0000 0.0000 0.0000 0.0000 0.7795 0.7955 1.0000

VIII. CONCLUSION AND FUTURE RESEARCH 

This paper presents an RL control model for path planning 
applications that can be used to improve safety and efficiency. 
The navigation system was provided to illustrate the model’s 
concept and techniques. 

Other methods in the literature, such as in [8], improved path 

planning, but safety and efficiency were not considered. 
Nevertheless, the presented model showed the robustness of 
making decisions following the optimal path, while considering 
safety and efficiency. Also, in the literature, for instance, in [9], 
[10], or [11], these approaches improved safety for path 
planning but assumed the zone risks had the same levels for all 
the unsafe regions. However, with this model, the safety and 
efficiency values can vary depending on the risk and efficiency 
situations. The presented model can compare risk levels and 
efficiency advantages and consider that intelligently while 
making its decision. 

This RL control model can incorporate many feature checks. 
For example, if there is a need to access hospitals along the way, 
avoid mountainous terrain, or other driver dependent features. 
The poor weather conditions and EV charge stations were taken 
to show the model response for safety and efficiency. The 
results show that the agent successfully avoided the unsafe 
regions, while considering efficiency advantages. 

As a limitation of this research, the model is not a 
replacement for the navigation system. Indeed, it is an added 
bonus to improve navigation systems and other path-planning 
control applications to acknowledge other features while 
generating optimal paths. 

In future research, the model can be applied to other control 
planning applications like surgical robotics, varying the risk 
level between human organs, as the agent should take feature 
checks under consideration while making its decisions. In 
addition, the model could be applied to physical systems to 
show how the agent intelligently takes responsibility for other 
matters, not just minimizing cost or arriving faster. 
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