Search results for: output average
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2485

Search results for: output average

415 Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers

Authors: Khryslyn Araño, Dela Cruz, Michael Leo, Dela Pena, Eden May, Leslie Joy Diaz

Abstract:

Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 Å to 13.6 Å and 12.6 Å after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.

Keywords: Electrospinning, nanofibers, montmorillonite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
414 Chitosan Nanoparticle as a Novel Delivery System for A/H1n1 Influenza Vaccine: Safe Property and Immunogenicity in Mice

Authors: Nguyen Anh Dzung, Nguyen Thi Ngoc Hà, Dang Thi Hong Van, Nguyen Thi Lan Phuong, Nguyen Thi Nhu Quynh, Dinh Minh Hiep, Le Van Hiep

Abstract:

The aims of this paper are to study the efficacy of chitosan nanoparticles in stimulating specific antibody against A/H1N1 influenza antigen in mice. Chitosan nanoparticles (CSN) were characterized by TEM. The results showed that the average size of CSN was from 80nm to 106nm. The efficacy of A/H1N1 influenza vaccine loaded on the surface of CSN showed that loading efficiency of A/H1N1 influenza antigen on CSN was from 93.75 to 100%. Safe property of the vaccine were tested. In 10 days post vaccination, group of CSN 30 kDa and 300 kDa loaded A/H1N1 influenza antigen were the rate of immune response on mice to be 100% (9/9) higher than Al(OH)3 and other adjuvant. 100% mice in the experiment of all groups had immune response in 20 days post vaccination. The results also showed that HI titer of the group using CSN 300 kDa as an adjuvant increased significantly up to 3971 HIU, over three-fold higher than the Al(OH)3 adjuvant, chitosan (CS), and one hundredfold than the A/H1N1 antigen only. Stability of the vaccine formulation was investigated.

Keywords: Chitosan nanoparticles, A/H1N1 influenza antigen, vaccine, immunogenicity, adjuvant, antibody titer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
413 Effective Defect Prevention Approach in Software Process for Achieving Better Quality Levels

Authors: Suma. V., T. R. Gopalakrishnan Nair

Abstract:

Defect prevention is the most vital but habitually neglected facet of software quality assurance in any project. If functional at all stages of software development, it can condense the time, overheads and wherewithal entailed to engineer a high quality product. The key challenge of an IT industry is to engineer a software product with minimum post deployment defects. This effort is an analysis based on data obtained for five selected projects from leading software companies of varying software production competence. The main aim of this paper is to provide information on various methods and practices supporting defect detection and prevention leading to thriving software generation. The defect prevention technique unearths 99% of defects. Inspection is found to be an essential technique in generating ideal software generation in factories through enhanced methodologies of abetted and unaided inspection schedules. On an average 13 % to 15% of inspection and 25% - 30% of testing out of whole project effort time is required for 99% - 99.75% of defect elimination. A comparison of the end results for the five selected projects between the companies is also brought about throwing light on the possibility of a particular company to position itself with an appropriate complementary ratio of inspection testing.

Keywords: Defect Detection and Prevention, Inspections, Software Engineering, Software Process, Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
412 The Reliability of Management Earnings Forecasts in IPO Prospectuses: A Study of Managers’ Forecasting Preferences

Authors: Maha Hammami, Olfa Benouda Sioud

Abstract:

This study investigates the reliability of management earnings forecasts with reference to these two ingredients: verifiability and neutrality. Specifically, we examine the biasedness (or accuracy) of management earnings forecasts and company specific characteristics that can be associated with accuracy. Based on sample of 102 IPO prospectuses published for admission on NYSE Euronext Paris from 2002 to 2010, we found that these forecasts are on average optimistic and two of the five test variables, earnings variability and financial leverage are significant in explaining ex post bias. Acknowledging the possibility that the bias is the result of the managers’ forecasting behavior, we then examine whether managers decide to under-predict, over-predict or forecast accurately for self-serving purposes. Explicitly, we examine the role of financial distress, operating performance, ownership by insiders and the economy state in influencing managers’ forecasting preferences. We find that managers of distressed firms seem to over-predict future earnings. We also find that when managers are given more stock options, they tend to under-predict future earnings. Finally, we conclude that the management earnings forecasts are affected by an intentional bias due to managers’ forecasting preferences.

Keywords: Intentional bias, Management earnings forecasts, neutrality, verifiability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
411 Spatial and Temporal Variability of Fog Over the Indo-Gangetic Plains, India

Authors: Sanjay Kumar Srivastava, Anu Rani Sharma, Kamna Sachdeva

Abstract:

The aim of the paper is to analyze the characteristics of winter fog in terms of its trend and spatial-temporal variability over Indo-Gangetic plains. The study reveals that during last four and half decades (1971-2015), an alarming increasing trend in fog frequency has been observed during the winter months of December and January over the study area. The frequency of fog has increased by 118.4% during the peak winter months of December and January. It has also been observed that on an average central part of IGP has 66.29% fog days followed by west IGP with 41.94% fog days. Further, Empirical Orthogonal Function (EOF) decomposition and Mann-Kendall variation analysis are used to analyze the spatial and temporal patterns of winter fog. The findings have significant implications for the further research of fog over IGP and formulate robust strategies to adapt the fog variability and mitigate its effects. The decision by Delhi Government to implement odd-even scheme to restrict the use of private vehicles in order to reduce pollution and improve quality of air may result in increasing the alarming increasing trend of fog over Delhi and its surrounding areas regions of IGP.

Keywords: Fog, climatology, spatial variability, temporal variability, empirical orthogonal function, visibility, Mann-Kendall test, variation point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
410 Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers

Authors: Rei-Tang Tsai, Chih-Yang Wu, Chia-Yuan Chang, Ming-Ying Kuo

Abstract:

This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with the serpentine channel of the same overall channel length. From the results, we can find the following trends. When convection dominates fluid mixing, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller centerline radius is better than that of a micromixer consisting of major segment repeating units with a larger centerline radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed.

Keywords: Microfluidics, mixing, non-Newtonian fluids, curved channel, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
409 Analysis of Event-related Response in Human Visual Cortex with fMRI

Authors: Ayesha Zaman, Tanvir Atahary, Shahida Rafiq

Abstract:

Functional Magnetic Resonance Imaging(fMRI) is a noninvasive imaging technique that measures the hemodynamic response related to neural activity in the human brain. Event-related functional magnetic resonance imaging (efMRI) is a form of functional Magnetic Resonance Imaging (fMRI) in which a series of fMRI images are time-locked to a stimulus presentation and averaged together over many trials. Again an event related potential (ERP) is a measured brain response that is directly the result of a thought or perception. Here the neuronal response of human visual cortex in normal healthy patients have been studied. The patients were asked to perform a visual three choice reaction task; from the relative response of each patient corresponding neuronal activity in visual cortex was imaged. The average number of neurons in the adult human primary visual cortex, in each hemisphere has been estimated at around 140 million. Statistical analysis of this experiment was done with SPM5(Statistical Parametric Mapping version 5) software. The result shows a robust design of imaging the neuronal activity of human visual cortex.

Keywords: Echo Planner Imaging, Event related Response, General Linear Model, Visual Neuronal Response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
408 Performance Analysis of Organic Rankine Cycle Technology to Exploit Low-Grade Waste Heat to Power Generation in Indian Industry

Authors: Bipul Krishna Saha, Basab Chakraborty, Ashish Alex Sam, Parthasarathi Ghosh

Abstract:

The demand for energy is cumulatively increasing with time.  Since the availability of conventional energy resources is dying out gradually, significant interest is being laid on searching for alternate energy resources and minimizing the wastage of energy in various fields.  In such perspective, low-grade waste heat from several industrial sources can be reused to generate electricity. The present work is to further the adoption of the Organic Rankine Cycle (ORC) technology in Indian industrial sector.  The present paper focuses on extending the previously reported idea to the next level through a comparative review with three different working fluids using practical data from an Indian industrial plant. For comprehensive study in the simulation platform of Aspen Hysys®, v8.6, the waste heat data has been collected from a current coke oven gas plant in India.  A parametric analysis of non-regenerative ORC and regenerative ORC is executed using the working fluids R-123, R-11 and R-21 for subcritical ORC system.  The primary goal is to determine the optimal working fluid considering various system parameters like turbine work output, obtained system efficiency, irreversibility rate and second law efficiency under applied multiple heat source temperature (160 °C- 180 °C).  Selection of the turbo-expanders is one of the most crucial tasks for low-temperature applications in ORC system. The present work is an attempt to make suitable recommendation for the appropriate configuration of the turbine. In a nutshell, this study justifies the proficiency of integrating the ORC technology in Indian perspective and also finds the appropriate parameter of all components integrated in ORC system for building up an ORC prototype.

Keywords: Organic rankine cycle, regenerative organic rankine cycle, waste heat recovery, Indian industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
407 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm

Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim

Abstract:

All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.

Keywords: Currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
406 Epidemiology of Waterborne Diarrhoeal Diseases among Children Aged 6-36 Months Old in Busia - Western Kenya

Authors: D. M. Onyango, P. O. Angienda

Abstract:

The purpose of the present study was to evaluate the epidemiology of waterborne diarrhoeal among children aged 6-36 months old in Busia town, western Kenya. The study was carried out between Feb. 2008 and Feb. 2010. Cases of diarrhoea reported in 385 households were linked to household water handling practices. A mother with a child of 6-36 months old was also included in the study. Diarrhoea prevalence among children 6-36 months was 16.7% in Busia town, Bwamani (19.6%) and Mayenje (10.6%) clustered in Mayenje sub-location reported the highest and the lowest prevalence of diarrhoea. There was a positive correlation between the prevalence of diarrhoea in children and the level of the mother-s education, 29.9% (n= 100). Diarrhoea cases decreased in range from 35.5% (n =102) to 4.8% (n= 16), corresponding to increase in age from 6-35 months on average. In conclusion, prevalence of diarrhoea in children of 6-36 months old was 16.7% in Busia town. This was higher in children whose mother-s age was below 18 years and with low level of education, the rate decreased with increase in age of children. Prevalence of diarrhoea in children aged 6-36months in households was higher in children aged 6-17 and 36 months and whose mothers were less educated and fell between the ages of 18-24 years. The Influence of human activities at the main source of drinking water on the prevalence of diarrhoea in these children was insignificant.

Keywords: Diarrhoea, Children, Mortality, Waterborne disease,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626
405 Working Motivation Factors Affecting Job Performance Effectiveness

Authors: Supattra Kanchanopast

Abstract:

The purpose of this paper was to study motivation factors affecting job performance effectiveness. This paper drew upon data collected from an Internal Audit Staffs of Internal Audit Line of Head Office of Krung Thai Public Company Limited. Statistics used included frequency, percentage, mean and standard deviation, t-test, and one-way ANOVA test. The finding revealed that the majority of the respondents were female of 46 years of age and over, married and live together, hold a bachelor degree, with an average monthly income over 70,001 Baht. The majority of respondents had over 15 years of work experience. They generally had high working motivation as well as high job performance effectiveness. The hypotheses testing disclosed that employees with different working status had different level of job performance effectiveness at a 0.01 level of significance. Working motivation factors had an effect on job performance in the same direction with high level. Individual working motivation included working completion, reorganization, working progression, working characteristic, opportunity, responsibility, management policy, supervision, relationship with their superior, relationship with co-worker, working position, working stability, safety, privacy, working conditions, and payment. All of these factors related to job performance effectiveness in the same direction with medium level.

Keywords: Internal Audit Staffs, Job Performance Effectiveness, Working Motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6385
404 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30d B SNR as a reference for voice activity.

Keywords: Atomic Decomposition, Gabor, Gammatone, Matching Pursuit, Voice Activity Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
403 Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes

Authors: Salam M. H. Kareem

Abstract:

Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure’s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills' requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills' requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid.

Keywords: Physical education, swimming classes, teaching process, teaching pyramid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
402 Creativity in the Use of Sinhala and English in Advertisements in Sri Lanka: A Morphological Analysis

Authors: Chamindi Dilkushi Senaratne

Abstract:

Sri Lanka has lived with the English language for more than 200 years. Although officially considered a link language, the phenomenal usage of English by the Sinhala-English bilingual has given rise to a mixed code with identifiable structural characteristics. The extensive use of the mixed language by the average Sri Lankan bilingual has resulted in it being used as a medium of communication by creative writers of bilingual advertisements in Sri Lanka. This study analyses the way in which English is used in bilingual advertisements in both print and electronic media in Sri Lanka. The theoretical framework for the study is based on Kachru’s analysis of the use of English by the bilingual, Muysken’s typology on code mixing theories in colonial settings and Myers-Scotton’s theory on the Matrix Language Framework Model. The study will look at a selection of Sinhala-English advertisements published in newspapers from 2015 to 2016. Only advertisements using both Sinhala and English are used for the analysis. To substantiate data collected from the newspapers, the study will select bilingual advertisements from television advertisements. The objective of the study is to analyze the mixed patterns used for creative purposes by advertisers. The results of the study will reveal the creativity used by the Sinhala –English bilingual and the morphological processes used by the creators of Sinhala-English bilingual advertisements to attract the masses.

Keywords: Bilingual, code mixing, mixed code, morphology, processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
401 Total Petroleum Hydrocarbon Contamination in Sediment and Wastewater from the Imam Khomeini and Razi Petrochemical Companies- Iran

Authors: Ghazaleh Monazami Tehrani, A. Halim Sulaiman, Rosli Hashim, Ahmad Savari, Belin Tavakoly Sany T Mohamad Taqi Jafarzadeh, Reza Khani Jazani, Zhamak Monazami Tehrani

Abstract:

The present study was performed in Musa bay (northern part of the Persian Gulf) around the coastal area of Bandare-Imam Khomeini and Razi Petrochemical Companies. Sediment samples and effluent samples were collected from the selected stations, from June 2009 to June 2010. The samples were analyzed to determine the degree of hydrocarbon contamination. The average level of TPH concentration in the study area was more than the natural background value at all of the stations, especially at station BI1 which was the main effluent outlet of Bandar-e- Imam Khomeini petrochemical company. Also the concentration of total petroleum hydrocarbon was monitored in the effluents of aforementioned petrochemical companies and the results showed that the concentration of TPH in the effluents of Bandar-e- Imam Khomeini petrochemical company was greater than Razi petrochemical company which is may be related to the products of Bandar-e- Imam Khomeini petrochemical company (aromatics, polymers, chemicals, fuel).

Keywords: Musa bay, Bandar-e- Imam Khomeini and Razi Petrochemical Companies, TPH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2996
400 Protein Secondary Structure Prediction Using Parallelized Rule Induction from Coverings

Authors: Leong Lee, Cyriac Kandoth, Jennifer L. Leopold, Ronald L. Frank

Abstract:

Protein 3D structure prediction has always been an important research area in bioinformatics. In particular, the prediction of secondary structure has been a well-studied research topic. Despite the recent breakthrough of combining multiple sequence alignment information and artificial intelligence algorithms to predict protein secondary structure, the Q3 accuracy of various computational prediction algorithms rarely has exceeded 75%. In a previous paper [1], this research team presented a rule-based method called RT-RICO (Relaxed Threshold Rule Induction from Coverings) to predict protein secondary structure. The average Q3 accuracy on the sample datasets using RT-RICO was 80.3%, an improvement over comparable computational methods. Although this demonstrated that RT-RICO might be a promising approach for predicting secondary structure, the algorithm-s computational complexity and program running time limited its use. Herein a parallelized implementation of a slightly modified RT-RICO approach is presented. This new version of the algorithm facilitated the testing of a much larger dataset of 396 protein domains [2]. Parallelized RTRICO achieved a Q3 score of 74.6%, which is higher than the consensus prediction accuracy of 72.9% that was achieved for the same test dataset by a combination of four secondary structure prediction methods [2].

Keywords: data mining, protein secondary structure prediction, parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
399 Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell

Authors: Nawang Chhunid, Gagnesh Kumar

Abstract:

On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively.

Keywords: DRAM cell, read access time, tanner EDA tool write access time and retention time, average power dissipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
398 Deterioration Assessment Models for Water Pipelines

Authors: L. Parvizsedghy, I. Gkountis, A. Senouci, T. Zayed, M. Alsharqawi, H. El Chanati, M. El-Abbasy, F. Mosleh

Abstract:

The aging and deterioration of water pipelines in cities worldwide result in more frequent water main breaks, water service disruptions, and flooding damage. Therefore, there is an urgent need for undertaking proper maintenance procedures to avoid breaks and disastrous failures. However, due to budget limitations, the maintenance of water pipeline networks needs to be prioritized through efficient deterioration assessment models. Previous studies focused on the development of structural or physical deterioration assessment models, which require expensive inspection data. But, this paper aims at developing deterioration assessment models for water pipelines using statistical techniques. Several deterioration models were developed based on pipeline size, material type, and soil type using linear regression analysis. The categorical nature of some variables affecting pipeline deterioration was considered through developing several categorical models. The developed models were validated with an average validity percentage greater than 95%. Moreover, sensitivity analysis was carried out against different classifications and it displayed higher importance of age of pipes compared to other factors. The developed models will be helpful for the water municipalities and asset managers to assess the condition of their pipes and prioritize them for maintenance and inspection purposes.

Keywords: Water pipelines, deterioration assessment models, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
397 Optimal Rest Interval between Sets in Robot-Based Upper-Arm Rehabilitation

Authors: Virgil Miranda, Gissele Mosqueda, Pablo Delgado, Yimesker Yihun

Abstract:

Muscular fatigue affects the muscle activation that is needed for producing the desired clinical outcome. Integrating optimal muscle relaxation periods into a variety of health care rehabilitation protocols is important to maximize the efficiency of the therapy. In this study, four muscle relaxation periods (30, 60, 90 and 120 seconds) and their effectiveness in producing consistent muscle activation of the muscle biceps brachii between sets of an elbow flexion and extension task were investigated among a sample of 10 subjects with no disabilities. The same resting periods were then utilized in a controlled exoskeleton-based exercise for a sample size of 5 subjects and have shown similar results. On average, the muscle activity of the biceps brachii decreased by 0.3% when rested for 30 seconds, and it increased by 1.25%, 0.76% and 0.82% when using muscle relaxation periods of 60, 90 and 120 seconds, respectively. The preliminary results suggest that a muscle relaxation period of about 60 seconds is needed for optimal continuous muscle activation within rehabilitation regimens. Robot-based rehabilitation is good to produce repetitive tasks with the right intensity and knowing the optimal resting period will make the automation more effective.

Keywords: Rest intervals, muscle biceps brachii, robot rehabilitation, muscle fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
396 Automated Optic Disc Detection in Retinal Images of Patients with Diabetic Retinopathy and Risk of Macular Edema

Authors: Arturo Aquino, Manuel Emilio Gegundez, Diego Marin

Abstract:

In this paper, a new automated methodology to detect the optic disc (OD) automatically in retinal images from patients with risk of being affected by Diabetic Retinopathy (DR) and Macular Edema (ME) is presented. The detection procedure comprises two independent methodologies. On one hand, a location methodology obtains a pixel that belongs to the OD using image contrast analysis and structure filtering techniques and, on the other hand, a boundary segmentation methodology estimates a circular approximation of the OD boundary by applying mathematical morphology, edge detection techniques and the Circular Hough Transform. The methodologies were tested on a set of 1200 images composed of 229 retinographies from patients affected by DR with risk of ME, 431 with DR and no risk of ME and 540 images of healthy retinas. The location methodology obtained 98.83% success rate, whereas the OD boundary segmentation methodology obtained good circular OD boundary approximation in 94.58% of cases. The average computational time measured over the total set was 1.67 seconds for OD location and 5.78 seconds for OD boundary segmentation.

Keywords: Diabetic retinopathy, macular edema, optic disc, automated detection, automated segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
395 Triangular Geometric Feature for Offline Signature Verification

Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad

Abstract:

Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.

Keywords: biometrics, euclidean classifier, feature extraction, offline signature verification, VOTING-based classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
394 Down-Regulated Gene Expression of GKN1 and GKN2 as Diagnostic Markers for Gastric Cancer

Authors: Amer A. Hasan, Mehri Igci, Ersin Borazan, Rozhgar A. Khailany, Emine Bayraktar, Ahmet Arslan

Abstract:

Gastric Cancer (GC) has high morbidity and fatality rate in various countries. It is still one of the most frequent and deadly diseases. Gastrokine1 (GKN1) and gastrokine2 (GKN2) genes are highly expressed in the normal stomach epithelium and play important roles in maintaining the integrity and homeostasis of stomach mucosal epithelial cells. In this study, 47 paired samples that were grouped according to the types of gastric cancer and the clinical characteristics of the patients, including gender and average of age. They were investigated with gene expression analysis and mutation screening by monitoring RT-PCR, SSCP and nucleotide sequencing techniques. Both GKN1 and GKN2 genes were observed significantly reduced found by (Wilcoxon signed rank test; p<0.05). As a result of gene screening, no mutation (no different genotype) was detected. It is considered that gene mutations are not the cause of gastrokines inactivation. In conclusion, the mRNA expression level of GKN1 and GKN2 genes statistically was decreased regardless the gender, age, or cancer type of patients. Reduced of gastrokine genes seem to occur at the initial steps of gastric cancer development.

Keywords: Diagnostic biomarker, gastric cancer, nucleotide sequencing, semi-quantitative RT-PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
393 Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation

Authors: Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More

Abstract:

A simple approach is demonstrated for growing large scale, nearly vertically aligned ZnO nanowire arrays by thermal oxidation method. To reveal effect of temperature on growth and physical properties of the ZnO nanowires, gold coated zinc substrates were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray diffraction patterns of annealed samples indicated a set of well defined diffraction peaks, indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscopy studies show formation of ZnO nanowires having length of several microns and average of diameter less than 500 nm. It is found that the areal density of wires is relatively higher, when the annealing is carried out at higher temperature i.e. at 400°C. From the field emission studies, the values of the turn-on and threshold field, required to draw emission current density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and 3.7 V/μm for that annealed at 400 °C, respectively. The field emission current stability, investigated over duration of more than 2 hours at the preset value of 1 μA, is found to be fairly good in both cases. The simplicity of the synthesis route coupled with the promising field emission properties offer unprecedented advantage for the use of ZnO field emitters for high current density applications.

Keywords: ZnO, Nanowires, Thermal oxidation, FieldEmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
392 Ultimately Bounded Takagi-Sugeno Fuzzy Management in Urban Traffic Stream Mechanism: Multi-Agent Modeling Approach

Authors: Reza Ghasemi, Negin Amiri Hazaveh

Abstract:

In this paper, control methodology based on the selection of the type of traffic light and the period of the green phase to accomplish an optimum balance at intersections is proposed. This balance should be flexible to the static behavior of time, and randomness in a traffic situation; the goal of the proposed method is to reduce traffic volume in transportation, the average delay for each vehicle, and control over the crash of cars. The proposed method was specifically investigated at the intersection through an appropriate timing of traffic lights by sampling a multi-agent system. It consists of a large number of intersections, each of which is considered as an independent agent that exchanges information with each other, and the stability of each agent is provided separately. The robustness against uncertainties, scalability, and stability of the closed-loop overall system are the main merits of the proposed methodology. The simulation results show that the fuzzy intelligent controller in this multi-factor system which is a Takagi-Sugeno (TS) fuzzy is more useful than scheduling in the fixed-time method and it reduces the lengths of vehicles queuing.

Keywords: Fuzzy intelligent controller, traffic-light control, multi-agent systems, state space equations, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555
391 Optimal Controllers with Actuator Saturation for Nonlinear Structures

Authors: M. Mohebbi, K. Shakeri

Abstract:

Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.

Keywords: Active control, Actuator Saturation, Distributedgeneticalgorithms, Nonlinear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
390 Application of Stochastic Models to Annual Extreme Streamflow Data

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.

Keywords: Stochastic models, ARIMA, extreme streamflow, Karkheh River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723
389 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation

Authors: Pratch Kittipongpattana, Thongchai Fongsamootr

Abstract:

This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.

Keywords: Boiler water wall tube, Finite element, Stress analysis, Strain gage rosette.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
388 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles

Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl

Abstract:

Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.

Keywords: Neural network, aerodynamic angles, virtual sensor, unmanned aerial vehicle, air data system, flight test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1023
387 A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, M. Sharmila

Abstract:

Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.

Keywords: Clustering, Cluster Ensemble methods, Co-association matrix, Consensus function, Median partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
386 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach

Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian

Abstract:

The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.

Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010