
 

 

 
Abstract—A simple adaptive voice activity detector (VAD) is 

implemented using Gabor and gammatone atomic decomposition of 
speech for high Gaussian noise environments. Matching pursuit is 
used for atomic decomposition, and is shown to achieve optimal 
speech detection capability at high data compression rates for low 
signal to noise ratios. The most active dictionary elements found by 
matching pursuit are used for the signal reconstruction so that the 
algorithm adapts to the individual speakers dominant time-frequency 
characteristics. Speech has a high peak to average ratio enabling 
matching pursuit greedy heuristic of highest inner products to isolate 
high energy speech components in high noise environments. Gabor 
and gammatone atoms are both investigated with identical 
logarithmically spaced center frequencies, and similar bandwidths. 
The algorithm performs equally well for both Gabor and gammatone 
atoms with no significant statistical differences. The algorithm 
achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR 
and 98% accuracy at a 20dB SNR using 30d B SNR as a reference 
for voice activity. 
 

Keywords—Atomic Decomposition, Gabor, Gammatone, 
Matching Pursuit, Voice Activity Detection. 

I. INTRODUCTION 

OICE activity detection is a vital process for automatic 
speech recognition systems like SIRI for the Iphone or 

“Ok Google” for Android phones. These applications work 
poorly or not at all in high noise environments. Activating a 
turn signal in a car, for example, may generate at “tick-tock” 
sound that can cause the system to fail. The first line of 
defense for automatic speech recognition systems is the VAD. 
Virtually all speech processors contain a VAD algorithm that 
attempts to estimate portions of signals that correspond to 
speech while ignoring sources of ambient noise. Automatic 
speech recognition systems are very sensitive to noise, so a 
robust VAD is a critical component in optimizing the systems 
accuracy. If the VAD falsely detects noise as speech, the 
speech recognition algorithm is given bad input. Conversely, 
if the VAD does not detect a valid speech signal, then the real 
data is missed which also results in poor performance.  

The background noise is not typically Additive White 
Gaussian Noise (AWGN) for real world speech recognition 
applications. However, a first step in designing a VAD is to 
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measure its performance with AWGN to provide a baseline of 
performance. Some types of noise are related to AWGN such 
as pink noise, and from the central limit theorem when there 
are multiple sources of background noise, the distribution 
tends to be Gaussian, although not necessarily white. 
Enhancements to the baseline VAD may subsequently be 
introduced to combat other types of noises. 

Gabor proposed that speech could be represented as “quanta 
of information” in the time-frequency plane [1]. Gabor 
recognized the time-frequency uncertainty problem of Fourier 
methods was similar to the Heisenberg uncertainty of 
Quantum physics. He proposed an atom composed of a cosine 
wave modulated by a Gaussian pulse. This fundamental 
“atom” can be elongated on contracted in time and amplitude 
to make a dictionary of atoms. Gabor believed that speech 
could be modeled as a superposition of these atoms in the time 
domain. In doing so, he theorized the fundamental information 
in the speech signal is captured in the temporal and amplitude 
coefficients of the atoms. 

Mallat and Zhang introduced the matching pursuit 
algorithm which finds the best inner products between data 
and dictionary atoms for all possible shifts of each atom [7]. 
The matching pursuit algorithm isolates structures in the data 
that are coherent with atoms from a given dictionary which is 
typically overcomplete. Linear expansions such as Fourier 
basis and wavelets are not flexible enough to represent 
complex data like speech that exhibit significant variation in 
the time-frequency plane [7]. For example, short impulses 
might best represent plosives in speech that are concentrated 
in time, whereas long duration formant frequencies may be 
better represented by long duration sinusoids with narrow 
frequency support. Fourier basis signal are not able to localize 
time, whereas multiresolution based discrete wavelet 
transforms are not able to localize high frequency components. 
Wigner or Cohen’s class distributions are able to 
simultaneously localize time and frequency, but contain 
interference terms. Atomic decomposition by matching pursuit 
is able to provide a clear picture of complex data in the time-
frequency plane. 

Matching pursuit is an attractive approach for isolating 
signals that have a high Peak to Average Power Ratio (PAPR) 
in AWGN channels. The greedy heuristic of the algorithm is 
to isolate portions of time series signals that are similar to a 
dictionary component with the highest inner product. Speech 
signals typically have a 12 dB PAPR for speech segment 
lasting several seconds [10]. Therefore, the first iterations of 
the algorithm will most likely detect valid speech components 
providing the dictionary elements are similar to time series 
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portions of the data. 
Lobo and Loizou implemented a matching pursuit atomic 

decomposition for voice activity detection using Gabor atoms 
[2]. In-class and out-of-class mixing matrices where used to 
reduce the dimensionality of the data. Classification was 
performed by a radial basis neural network that required 
supervised learning. Lobo and Loizou achieved 84% accuracy 
at a 5dB SNR from 64 randomly chosen TIMIT corpus 
sentences with AWGN [2].  

This paper used 64 randomly chosen TIMIT corpus 
sentences with AWGN as a basis of comparison to the work of 
Lobo and Loizou using Gabor atoms. The gammatone atom is 
also used for atomic decomposition as it accurately models the 
auditory neural response in the human peripheral audio 
pathway to natural sounds as well as speech [3]-[6]. Kressner 
el al. used gammatone atomic decomposition implemented by 
matching pursuit to denoise speech. They demonstrated 
improved intelligibility in noisy environments for hearing aid 
applications [8]. Today gammagrams are used as an 
alternative to spectrograms to represent time-frequency 
characteristics of speech. Moreover, Gamma Frequency 
Cepstral Coefficients are being used in place of the FFT based 
Mel Frequency Cepstral Coefficients for feature vectors in 
speech processing. The VAD is implemented withGabor 
atoms, and then repeated using gammatone atoms is order to 
see if the gammatone atom VAD has better accuracy than the 
Gabor VAD in AWGN channel and at low SNR’s. 

The design parameters for gammatone and Gabor atoms are 
presented in Section II. Section III discusses the 
implementation of matching pursuit for the VAD. Finally, the 
results and conclusion are presented in Sections IV and V. 

II. GAMMATONE AND GABOR ATOM DESIGN PARAMETERS 

Gammatone filter banks were implemented using Infinite 
Impulse Response filters by Roy Patterson in 1992 as an 
efficient approximation to auditory frequency processing of 
the human ear [4]. The filter bank for this VAD uses 
logarithmically spaced center frequencies as opposed to the 
Equivalent Rectangular Bandwidth design proposed by 
Patterson. This is to enable comparison with equally space 
Gabor atoms.  

There are 16 gammatone and 16 Gabor filters with a 
minimum frequency of 100Hz and a maximum center 
frequency of 3200Hz. The TIMIT data is resampled at Fs= 
8ksps. The window length for all Gabor and gammatone 
atoms is 50mSec which corresponds to 400 samples at 8ksps. 
The logarithmically spaced center frequencies ( ) are given 
as:  
 

 = [ 100, 126, 159, 200, 252, 317, 400, 504, 635, 800, 1008, 1270, 
1600, 2016, 2540, 3200 ] Hz. 

 
The gammatone impulse response is given by, 
 

	 	 .      (1) 
 
The pulse width is a function of the center frequencies , 

.           (2) 
 

The value of A was set so that the L2 norm = 1. 
The value of θ was set so that the peak of the cosine 

function coincides with the peak of the gamma envelope. 
The parameter n controls the rise time of the gamma pulse 

and was found to be 4 for human auditory response modeling 
[4]. The parameter B controls the bandwidth and was 
optimized for the best frequency overlap characteristic with 
logarithmically spaced center frequencies.  

Gabor atoms used the same center frequencies	 , for 
purposes of comparison to gammatone atoms. The equation 
for the Gabor atom is given by, 

 

	
√

⁄ 	 .      (3) 

 
The bandwidth of the Gabor atoms is set by σ, which increases 
logarithmically with center frequency. The vector was 
determined empirically, to match the frequency response of 
the gammatone atoms. The Gabor vector is, 
 

 = [ 3.00, 3.70, 4.57, 5.65, 6.98, 8.61, 10.64, 13.13, 16.22, 20.03, 
24.73, 30.54, 37.71, 46.56, 57.50, 71.00 ]. 

 

 

Fig. 1 Gabor L2 Normalized Frequency Responses, atom1 = 100Hz, 
atom8 = 504Hz and atom16 3200Hz 

 

 

Fig. 2 Gammatone L2 Normalized Frequency Response, atom1 = 
100Hz, atom8 = 504Hz and atom16 3200Hz 

 
The frequency responses of the Gabor and gammatone 

atoms 1, 8, and 16 are shown in Figs. 1 and 2. The normalized 
Gabor and gamma envelopes are shown in Figs. 3 and 4. The 
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center frequencies for the Gabor and gammatone atoms match 
exactly, while the bandwidths are only approximated. 
However, one can see from Figs. 1 and 2, the bandwidths are 
very similar. Figs. 3 and 4 show the pulse widths in the time 
domain are also very similar between the Gabor atom and the 
Gammatone atoms. The Gabor atom has a sharper roll-off 
characteristic in the frequency domain. The Gammatone atom 
has a faster rise time in the time domain and a slow roll-off 
characteristic, while the Gabor atom is modulated by a 
symmetrical Gaussian pulse in the time domain. 

 

 

Fig. 3 Gabor L2 Normalized Time Domain Envelopes, atom1 = 
100Hz, atom8 = 504Hz and atom16 =3200Hz 

 

 

Fig. 4 Gammatone L2 Normalized Time Domain Envelopes, atom1 = 
100Hz, atom8 = 504Hz and atom16 =3200Hz 

 

 

Fig. 5 Gabor L2 Normalized Impulse Responses, atom1 = 100Hz 
 

The Gabor and Gammatone impulse responses for atom1 
which corresponds to the lowest frequency, 100 Hz is shown 

in Figs. 5 and 6. The highest frequency, 3200 Hz impulse 
responses for atom16 are shown in Figs. 7 and 8. The pulse 
widths are seen to be very similar for the lowest and highest 
frequency Gabor and Gammatone atoms. Additionally, the 
normalized amplitudes are also very similar. 

 

 

Fig. 6 Gammatone L2 Normalized Impulse Responses, atom1 = 
100Hz 

 

 

Fig. 7 Gabor L2 Normalized Impulse Responses, atom16 = 3200Hz 
 

 

Fig. 8 Gammatone L2 Normalized Impulse Responses, atom16 = 
3200Hz 

III. MATCHING PURSUIT VAD IMPLEMENTATION 

Matching pursuit is a greedy algorithm that represents time 
series data as a linear superposition of fundamental atoms. 
Matching pursuit follows a simple heuristic of finding 
correlation peaks between input data and a set of atoms for all 
possible shifts of each atom. The algorithm finds correlation 
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peaks that represent a minimum mean square error (MMSE) 
fit between portions of the data and the best atom provided the 
L2 norm of the atom is set to 1. The algorithm halts once a 
stopping goal is achieved. If an amplitude coefficient falls 
below a minimum threshold, or when a certain portion of the 
energy of the signal is captured by the decomposition the 
algorithm may be halted. Alternatively, the algorithm might be 
terminated after a specified number of iterations. This VAD 
implementation uses a stopping goal that is specified by a 
fixed number of iterations based on the desired data 
compression.  

The audio stream  may be represented by a linear 
superposition of atoms from a dictionary . 

 
	∑ ∑ , ,     (4) 

 
where,  is the approximation error or residual, after  
iterations of matching pursuit. The input data length is 
designated by ,	so that the number of iterations of the 
algorithm is given by, 

 
.           (5) 

 
where, D is the data compression. The optimum data 
compression for a given input SNR was found by computer 
simulation. The reconstructed SNR produced by matching 
pursuit was compared to the noiseless TIMIT input. The 
computer search was conducted using an iteration count 
ranging from 1% to 30% of the number of samples in the 
TIMIT sentence. This corresponds to a data compression of 
99% to 70%. A typical TIMIT sentence lasts 3 to 5 seconds. 
Using an 8ksps sample rate this yields 24k to 40k samples per 
sentence. For data compression of 99%, or 1% of the sample 
length, typical iteration counts range from 240 to 400 
iterations of matching pursuit.  

Simulation parameters: 
o The length of the input TIMIT sentence, . 
o Number is iterations, . 
o The number of Gabor and gammatone atoms, . 
o The index of the correlation peak, .  
o The amplitude coefficient for the time index  and atom 

	is denoted by ,  . 
o The time index  and atom 	coefficient is denoted by 

, . 
The steps of matching pursuit are 

1. Initialize the algorithm  
2. Compute for all , ∈	 	: CORR , ,  = |〈 , ,〉| 
3. Find the largest inner product, maxArg 〈 , ,〉  
4. Compute the new residual, 	 〈 , ,〉 ,	

5. Repeat step 2-4 until n iterations of the algorithm are 
complete.	

The matching pursuit algorithm coherently finds the best 
match between the data and the atoms of the dictionary . The 
correlation process phase aligns the best atom with input data 
while at the same time minimizing the MMSE between the 
atom and the data segment. The simple heuristic of selecting 
the largest correlation peak from the best atom in the 

dictionary effectively produces a time overlapped MMSE 
detection of the data, which is known to optimize the mutual 
information between the data and the dictionary elements [9]. 
This approach works well so long as the atoms accurately 
represent the data. For this reason gammatone and Gabor 
atoms are compared for their performance in representing 
speech.  

Examples of speech segments that are similar to gammatone 
and Gabor atoms are shown in Figs. 9 and 10. Both the Gabor 
and gammatone atoms have the same correlation index for the 
first iteration of matching pursuit. It can be seen that neither 
atom has a perfect fit to the data. This is primarily due to poor 
frequency resolution associated with using only 16 atoms for 
the VAD implementation.  

 

 

Fig. 9 Structure of Speech Similar to a Gammatone atom 
 

 

Fig. 10 Structure of Speech Similar to aGabor atom 
 

The denoising capability of matching pursuit for high noise 
environments can be seen in Figs. 11 and 12. At a -5dB input 
SNR, the output achieves a peak of 1.5dB for 99.2% data 
compression. This shows an improvement of 6.5 dB from the 
input to output SNR. For a -2.5dB input SNR, the peak is at 
99% data compression with an SNR improvement of 5dB. 

Fig. 13 shows a peak of 2.8dB for 98% data compression at 
0 dB input SNR. This is an improvement of 2.7 dB from the 
input to output SNR. For a 5dB input SNR, the peak is at 
96.3% data compression. For 5 dB SNR’s and higher, 
matching pursuit no longer is able to perform denoising as can 
be seen in Fig. 14. Fig. 15 shows a 10 dB input SNR has a 
reduction of 3.5 dB SNR at 92% data compression. Fig. 16 
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shows a 20 dB input SNR exhibits a 10dB SNR loss at a data 
compression below 82%. This study was optimized for a 5 dB 
input SNR and therefore, a 96.3 % data compression goal was 
used as the stopping criteria for matching pursuit. This 
threshold was low enough to capture some of the low SNR 
performance, and high enough to still perform adequately for 
high SNR inputs. 

 

 

Fig. 11 Matching Pursuit Reconstruction SNR Verses Data 
Compression for a -5dB SNR 

 

 

Fig. 12 Matching Pursuit Reconstruction SNR Verses Data 
Compression for a -2.5dB SNR 

 

 

Fig. 13 Matching Pursuit Reconstruction SNR Verses Data 
Compression for a 0 dB SNR 

 

 

Fig. 14 Matching Pursuit Reconstruction SNR Verses Data 
Compression for a 5dB SNR 

 

 

Fig. 15 Matching Pursuit Reconstruction SNR Verses Data 
Compression for a 10 dB SNR 

 

 

Fig. 16 Matching Pursuit Reconstruction SNR Verses Data 
Compression for a 20dB SNR 

 
Matching pursuit was run on 64 randomly selected 

sentences from the TIMIT database. Due to the random nature 
of TIMIT sentence selection, 10 trials of 64 randomly selected 
TIMIT sentences were run to get a good mean statistic of the 
accuracy. The data for each sentence was collected from 0 to 
20 dB SNR in 1 dB steps, with the number of iterations n set 
to 3.7% of the sample length. After n iterations of matching 
pursuit, the algorithm summed the amplitude coefficients, 

, for each atomic index . The sums were sorted and only 
the best 50% of the atomic indices were used to reconstruct 
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the signal. 
 

	 , 	 	 1,2… .   (6) 
 

	 	 	 	50%.   (7) 
 
This produced a very sparse representation of the data that 

had 98.15% data compression. 
The atoms were used to reconstruct the data. The 

envelope of the reconstructed data was used for the VAD. An 
adaptive threshold, based on an estimated SNR, was applied to 
the envelope to produce the VAD output.  

The high energy portions of the reconstructed signal were 
used estimate the signal strength. Due to the sparsity of the 
representation, much of reconstruction had zero energy, even 
at low SNR’s. The noise floor was estimated by finding the 
mean of the L2 norm of the noisy speech where the speech 
estimate was zero. The noise floor estimate was multiplied by 
a noise threshold factor that produces an envelope detection 
threshold. A noise floor multiplier was found by trial and error 
for input SNR’s, from 0 dB, in steps of 2dB to 20 dB. The 
noise floor multiplier was manually adjusted to produce the 
best VAD accuracy for a particular input SNR. This data was 
paired with an SNR estimate to produce the following data 
vectors, 

 
Estimate of SNR in dB = [ -8.94, -4.59, 1.16, 6.33, 9.47, 11.58, 

13.46, 15.08, 16.46, 19.25 ] 
 

Optimum Noise Floor Multiplier = [ 20, 22, 27, 40, 53, 67, 80, 100, 
117, 130] 

 
Polynomial regression was used to generate a quadratic 

model of the SNR estimate that produces the noise 
multiplication threshold. The quadratic model takes the 
following form, 

 
Signal detection Threshold = X θ 

 
where X is a quadratic vector of the SNR estimate, 

 
X = [ 1	 	  ], 

 
with model parameters, 

 

	
θ
θ
	θ 	

 

 
The model was found by regression by stacking the X’s into 

rows and targets Y into a column 
 

X= 

1	 	
1	 	
1	 	

.

..
	1	 	

, 	

20
22
27
.
..

130

 

 

Then the model was calculated by the normal equation as, 
 

	 	 
 

For 64 randomly selected sentences from the TIMIT corpus, 
the model parameters were found to be, 

 
21.57
1.74
. 21

 

 

Fig. 17 shows the model fit to the optimized data. Note that 
the SNR estimate ranges from -10 to 20 dB, while the actual 
input SNR was varied from 0 to 20 dB. The signal 
measurement has additive noise which corrupts the 
measurement, while the noise floor estimate contains low 
energy speech which also adds error. The error was of little 
consequence as the noise floor quadratic gain model maps the 
SNR estimate to the optimum noise floor gain. This produces 
the optimized VAD detection threshold and was very 
repeatable for 64 randomly selected TIMIT sentences. 

 

 

Fig. 17 Quadratic Model of Noise Floor Gain Optimized for VAD 
Accuracy 

IV. RESULTS 

The VAD accuracy was measured by generating VAD time 
indices for a 30 dB reference input SNR. The AWGN was 
adjusted for desired input SNR and the VAD was rerun. The 
accuracy was based on the ratio of common to common plus 
different VAD time indices. Examples of the performance of 
the VAD for a reference SNR of 30 dB, and 5 dB SNR are 
shown in Figs. 18 and 19. The reconstructed envelope for 
98.15% data compression, shown in magenta can be seen for 
both 30dB SNR’s and a 5 dB SNR. The VAD is able to isolate 
portions of speech at low SNR that appear in the reference. 
The VAD output is shown in black and was 90% accurate to 
the VAD performance at 30 dB SNR for data collected from 
64 random TIMIT sentences. 

Trial runs of 10 different repetitions of 64 TIMIT random 
sentences were run to obtain a mean estimate of the VAD 
performance. The VAD accuracy verses input SNR can be 
seen in Figs. 20 and 21. The VAD achieves 70% accuracy at 0 
dB SNR, 90% accuracy at 5 dB SNR and 97% accuracy at 
20dB SNR. There was no distinguishable difference in the 
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performance of Gabor verses gammatone atoms. The variance 
of the Gabor atoms appears slightly lower than the gammatone 
atoms. However, the mean performance looks nearly identical. 

 

 

Fig. 18VAD Performance, 30 dB SNR 
 

 

Fig. 19 VAD Performance, 5dB SNR 
 

 

Fig. 20 VAD Accuracy, Gabor Atoms, 98.15% Data Compression, 64 
Random TIMIT Sentences, 10 Trials 

 

 

Fig. 21 VAD Accuracy, GammatoneAtoms, 98.15% Data 
Compression, 64 Random TIMIT Sentences, 10 Trials 

V. SUMMARY AND CONCLUSIONS 

Matching pursuit atomic decomposition for speech signals 
produces a high quality VAD with good accuracy at low 
SNR’s. The stopping criterion for matching pursuit was based 
on a fixed data compression value. The optimum data 
compression of 96.3% for a 5 dB SNR was used for all input 
SNR’s with good results. The high data compression allows 
matching pursuit to isolate high energy portions of speech at 
low SNR’s. The intuition for this performance is that speech 
has a high PAPR whereas AWGN does not. Consequently the 
first iterations of the algorithm are most likely to find valid 
speech components. This approach should work well with any 
type of signals with high PAPR’s in AWGN environments. 
The salient feature of matching pursuit is the atoms closely 
match the signature time-frequency characteristics of the data. 
An additional nuance of the VAD implementation was to 
retain only the atoms with the best fit to the data based on the 
atom index. This approach adapts to the time-frequency 
characteristic for individual speakers automatically. Finally, 
an adaptive reconstructed envelope threshold was based on a 
SNR estimate of the noisy speech. The signal estimate was 
based on the high energy portions of the data. The zero energy 
indices found by the sparse envelope reconstruction of 
matching pursuit were used to calculate a noise floor estimate 
of the data base on the average L2 norm of the samples. The 
SNR is actually a signal plus noise to noise pulse signal 
estimate. The SNR estimate was mapped to optimal thresholds 
found by trial-and-error. A quadratic model was derived that 
maps the target thresholds to the SNR estimate for a range of 
input SNR’s from 1 to 20 dB. 

The simple adaptive VAD atomic decomposition has 90% 
accuracy as compared to the VAD of Lobo and Loizou which 
has 84% accuracy at a 5 dB input SNR. Both approaches use 
matching pursuit atomic decomposition with Gabor atoms, 
and both used 64 randomly selected sentences from the TIMIT 
corpus. The later approach however, is far more complicated 
as it requires supervised learning as opposed to this simple 
adaptive implementation 
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