WASET
	%0 Journal Article
	%A Farid Jamali Sheini and  Dilip S. Joag and  Mahendra A. More
	%D 2011
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 50, 2011
	%T Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation
	%U https://publications.waset.org/pdf/12661
	%V 50
	%X A simple approach is demonstrated for growing large
scale, nearly vertically aligned ZnO nanowire arrays by thermal
oxidation method. To reveal effect of temperature on growth and
physical properties of the ZnO nanowires, gold coated zinc substrates
were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray
diffraction patterns of annealed samples indicated a set of well
defined diffraction peaks, indexed to the wurtzite hexagonal phase of
ZnO. The scanning electron microscopy studies show formation of
ZnO nanowires having length of several microns and average of
diameter less than 500 nm. It is found that the areal density of wires
is relatively higher, when the annealing is carried out at higher
temperature i.e. at 400°C. From the field emission studies, the values
of the turn-on and threshold field, required to draw emission current
density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm
and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and
3.7 V/μm for that annealed at 400 °C, respectively. The field
emission current stability, investigated over duration of more than 2
hours at the preset value of 1 μA, is found to be fairly good in both
cases. The simplicity of the synthesis route coupled with the
promising field emission properties offer unprecedented advantage
for the use of ZnO field emitters for high current density
applications.
	%P 109 - 113