Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32926
Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation

Authors: Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More


A simple approach is demonstrated for growing large scale, nearly vertically aligned ZnO nanowire arrays by thermal oxidation method. To reveal effect of temperature on growth and physical properties of the ZnO nanowires, gold coated zinc substrates were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray diffraction patterns of annealed samples indicated a set of well defined diffraction peaks, indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscopy studies show formation of ZnO nanowires having length of several microns and average of diameter less than 500 nm. It is found that the areal density of wires is relatively higher, when the annealing is carried out at higher temperature i.e. at 400°C. From the field emission studies, the values of the turn-on and threshold field, required to draw emission current density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and 3.7 V/μm for that annealed at 400 °C, respectively. The field emission current stability, investigated over duration of more than 2 hours at the preset value of 1 μA, is found to be fairly good in both cases. The simplicity of the synthesis route coupled with the promising field emission properties offer unprecedented advantage for the use of ZnO field emitters for high current density applications.

Keywords: ZnO, Nanowires, Thermal oxidation, FieldEmission.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044


[1] L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, W. F. Zhang, J. Phys. Chem. C 111(2007)1900.
[2] S. P. Lau, H. Y. Yang, S. F. Yu, H. D. Li, M. Tanemura, T. Okita, H. Hatano, H. H. Hng, Appl. Phys. Lett. 87(2005) 013104.
[3] Z. L. Wang, Materials Today, 10 (2007) 20.
[4] F. Jamali Sheini, D. S. Joag M. A. More, Ultramicroscopy 109 (2009) 418.
[5] B. Cao, X. Teng, S. H. Heo, Y. Li, S. O. Cho, G. Li,W. Cai, J. Phys. Chem. C 111 (2007) 2470.
[6] A. Wei, X. W. Sun, C. X.Xu, Z. L. Dong, M. B. Yu, W. Huang, Appl. Phys. Lett. 88 (2006) 213102.
[7] D. Pradhan, M. Kumar, Y. Ando, K. T. Leung, 1(4) ACS Appl. Mater. Interfaces. (2009) 789.
[8] F. Jamali Sheini, D. S. Joag M. A. More, Jai Singh, O.N. Srivastava, Mareials Chemistry and Physics 109 (2009) 418.
[9] A. Umar, B. Karunagaran, S. H. Kim, E. -K. Suh, Y. B. Hahn, Inorg. Chem. 47 (2008) 4088.
[10] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, J. M. Xu, Appl. Phys. Lett. 84 (2004) 3376.
[11] Y. Wu, P. Yang, J. Am. Chem. Soc. 123 (2001) 3165.
[12] X. Duan, C. M. Lieber J. Am. Chem. Soc. 122 (2000) 188.
[13] Y. Zhang, K. Yu, S. Ouyang, Z. Zhu, Mater. Lett. 60 (2006) 522.
[14] N. Liu, G. Fang, W. Zeng, H. Long, L. Yuan, X. Zhao, Appl. Phys. Lett. 95 (2009) 153505.
[15] N. S. Ramgir, D. J. Late, A. B. Bhise, I. S. Mulla, M. A. More, D. S. Joag, V. K. Pillai, Nanotechnology 17 (2006) 2730.
[16] R. H. Fowler, L. W. Nordheim, Proc. R. Soc. London, Ser. A 119 (1928) 173.