WASET
	%0 Journal Article
	%A M. Mohebbi and  K. Shakeri
	%D 2010
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 37, 2010
	%T Optimal Controllers with Actuator Saturation for Nonlinear Structures
	%U https://publications.waset.org/pdf/3659
	%V 37
	%X Since the actuator capacity is limited, in the real
application of active control systems under sever earthquakes it is
conceivable that the actuators saturate, hence the actuator saturation
should be considered as a constraint in design of optimal controllers.
In this paper optimal design of active controllers for nonlinear
structures by considering actuator saturation, has been studied. The
proposed method for designing optimal controllers is based on
defining an optimization problem which the objective has been to
minimize the maximum displacement of structure when a limited
capacity for actuator has been used. To this end a single degree of
freedom (SDF) structure with a bilinear hysteretic behavior has been
simulated under a white noise ground acceleration of different
amplitudes. Active tendon control mechanism, comprised of prestressed
tendons and an actuator, and extended nonlinear Newmark
method based instantaneous optimal control algorithm have been
used. To achieve the best results, the weights corresponding to
displacement, velocity, acceleration and control force in the
performance index have been optimized by the Distributed Genetic
Algorithm (DGA). Results show the effectiveness of the proposed
method in considering actuator saturation. Also based on the
numerical simulations it can be concluded that the actuator capacity
and the average value of required control force are two important
factors in designing nonlinear controllers which consider the actuator
saturation.
	%P 58 - 64