Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31824
Chitosan Nanoparticle as a Novel Delivery System for A/H1n1 Influenza Vaccine: Safe Property and Immunogenicity in Mice

Authors: Nguyen Anh Dzung, Nguyen Thi Ngoc Hà, Dang Thi Hong Van, Nguyen Thi Lan Phuong, Nguyen Thi Nhu Quynh, Dinh Minh Hiep, Le Van Hiep


The aims of this paper are to study the efficacy of chitosan nanoparticles in stimulating specific antibody against A/H1N1 influenza antigen in mice. Chitosan nanoparticles (CSN) were characterized by TEM. The results showed that the average size of CSN was from 80nm to 106nm. The efficacy of A/H1N1 influenza vaccine loaded on the surface of CSN showed that loading efficiency of A/H1N1 influenza antigen on CSN was from 93.75 to 100%. Safe property of the vaccine were tested. In 10 days post vaccination, group of CSN 30 kDa and 300 kDa loaded A/H1N1 influenza antigen were the rate of immune response on mice to be 100% (9/9) higher than Al(OH)3 and other adjuvant. 100% mice in the experiment of all groups had immune response in 20 days post vaccination. The results also showed that HI titer of the group using CSN 300 kDa as an adjuvant increased significantly up to 3971 HIU, over three-fold higher than the Al(OH)3 adjuvant, chitosan (CS), and one hundredfold than the A/H1N1 antigen only. Stability of the vaccine formulation was investigated.

Keywords: Chitosan nanoparticles, A/H1N1 influenza antigen, vaccine, immunogenicity, adjuvant, antibody titer

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273


[1] WHO. WHO Media Influenza Factsheet N0211. 2003; http:/
[2] WHO. 6th WHO Meeting on Evaluation of Pandemic Influenza Vaccines in Clinical Trials, February, 2010.
[3] B. P. Arulanandam, M. O- Toole, D. W. Metzger. Intranasal interleukin- 12 is a powerful adjuvant for protective mucosal immunity. Journal Infection Disease; 180: 940-949, 1999.
[4] B. Guy, N. Pascal, A. Francon. Design, characterization and preclinicl efficacy of a cationic lipid adjuvant for influenza split vaccine. Vaccine, Vol. 19: 1794-1805, 2001.
[5] I. Bracci, I. Caniti & S. Puzelli. Type I IFN as a vaccine adjuvant for both systemic and mucosal vaccination against influenza virus. Vaccine; 24 (suppl.2):2: 56-57, 2006.
[6] S. K. Song, Z. Moldoveanu & H. H. Nguyen. Intranasal immunization with influenza virus and Korean misteloe lectin C (KML-C) induces heterosubtypic immunity in mice. Vaccine; 25: 6359-6366. 2007.
[7] S. Y. Ko, H. J. Ko, W. S. Chang, S.H. Park, M. N. Kweon & C. Y. Kang. Alpha-Galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J. Immunol; 175: 3309-3317. 2005.
[8] H. J. Youn, S. Y. Ko & K. A. Lee. A single intranasal immunization with inactivated influenza virus and alpha-Galactosylceramide induces long-term protective immunity without redirecting antigen to the respiratory pathogens. Vaccine; 25: 5189-5198, 2007.
[9] I. Illium, J. Gill, M. Hinchcliffe, A. N. Fisher & S. S. Davis. Chitosan as a novel nasal delivery system for vaccines. Advanced drug delivery review; 51: 81-96, 2001.
[10] J. Huang, R. J. Garmise & T. M. Crowder. A novel dry powder influenza vaccine intranasal delivery technology: induction of systemic and mucosal immune response in rats. Vaccine; 23: 144-153. 2004.
[11] M. Amidi, S. G. Romeijn, J. C. Verhoef, H. E. Junginger, L. Bungener, A. Huckriede, D. J. A. Crommelin & W. Jiskoot. N- Trimethyl chitosan (TMC) nanoparticles loaded subunit antigen for intranasal vaccination: Biological properties and immunogenicity in a mouse model. Vaccine; 25: 144-153, 2007.
[12] R.J. Garmise, H. F. Staats & A. J. Hickey. A novel dry powder preparation of whole inactivated influenza virus for nasal vaccination. e. Design, characterization and preclinical efficacy of a cationic lipid adjuvant for influenza split vaccine. Vaccine; 19: 1794-1805, 2007.
[13] R. M. N. V. Kumar. A review of chitin and chitosan applications. Reactive & Funtion Polymer; 46, 1-27, 2000.
[14] M. Rinaudo. Chitin and chitosan: properties and application, Progress in polymer science; 31, 603-632, 2006.
[15] H. K. No, N. J . Park, S. H. Lee, S. P. Meyers. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology; 74, 65 - 72, 2002.
[16] P. Sanpui, A. Murugadoss, P. V. Durga Prasad, S. S. Gosh, A. Chattopadhyay. The antibacterial properties of a novel chitosan-Agnanoparticle. International Journal of Food Microbiology; 124, 142- 146, 2008.
[17] L. Qi, Z. Xu, X. Jiang, C. Hu & X. Zou. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research; 339, 2693- 2700, 2004.
[18] M. R. Avadi, A.M.M. Sadeghi, A. Tahzibi, K. Bayati, M. Pouladzadeh, M. Zohuriaan, M. Rafiee-Tehrani. Diethylmethyl chitosan as an antimicrobial agent: Synthesis, characterization and antibacterial effects. European Polymer Journal; 40: 1355-1361, 2004.
[19] K. Xing, X. G. Chen, Y.Y. Li, C.S. Liu, C.G. Liu, D.S. Cha, H.J. Park. Antibacterial activity of oleoyl-chitosan nanoparticles: A novel antibacterial dispersion system. Carbohydrate Polymer; 74: 114-120, 2008.
[20] F. C. MacLaughlin, R. J. Mumper, J. Wang, J. M. Tagliaferri, I. Gill, M. Hinchcliffe, A.P. Rolland. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. Journal of Controlled Release; 56: 259-272, 1998.
[21] T. Kean, S. Roth & M. Thanou. Trimethylated chitosans as non-viral gene delivery vectors: Cytotoxicity and transfection efficiency. Journal of Controlled Release; 2005; 103: 643-653.
[22] T. Kiang, J. Wen, H.W. Lim & K.W. Leong. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials; 25: 5293-5301, 2005.
[23] Q. Gan, T. Wang, C. Cochrane & P. McCarron. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces; 44: 65-73, 2005.
[24] A. M. De Campos, A. Sanchez, M. J. Alonso. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporine A. International Journal of Pharmaceutics; 224: 159-168, 2001.
[25] M. H. El-Salbouri. Positively charged nanoparticles for improving the oral bioavailability of cyclosporine A. International Journal of Pharmaceutics; 249: 101-108, 2001.
[26] J. Zhang, X. G. Chen, Y. Y. Li & C. S. Liu. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomedicine: Nanotechnology, Biology, and Medicine; 3: 258-265, 2007.
[27] Q. Gan & T. Wang. Chitosan nanoparticles as protein delivery carrierssystematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces B: Biointerfaces; 59: 24-34, 2007.
[28] B. Sarmento, A. Ribeiro, F. Veiga & D. Ferreira. Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids and Surfaces B: Biointerfaces; 53: 193-202, 2006.
[29] Y. Zheng. Nanoparticles based on the complex of chitosan with polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery, European Journal of Pharmaceutic and Biopharmaceutics; 67: 621-631, 2007.
[30] P. G. Seferia & M. L. Martinez. Immune stimulating activity of two new chitosan containing adjuvant formulation. Vaccine; 19: 661-668, 2001.
[31] O. Borges, J. Tavares, A. de Sousa, G. Borchard, H. E. Junginger & A. Cordeiro-da-Silva. Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. European Journal of Pharmaceutical Science; 32: 278-290, 2007.
[32] D. A. Zaharoff, J. R. Connie, W. H. Kenneth, S. Jeffrey, W. G. John. Chitosan solution enhances the immunoadjuvant properties of GM-CSF. Vaccine; 25: 8673-8686, 2007.
[33] I. M. vander Lubben, J. C. Verhoef, G. Borchard, H. E. Junginger. Chitosan and its derivatives in mucosal drug and vaccine delivery. European Journal of Pharmaceutical Science; 14: 201-207, 2001.
[34] A. Vila, A. Sanchez, K. Jane, I. Behrens, T. Kissel, J. L. V. Jato & M. J. Alonso. Low molecular weight chitosan nanoparticles as a new carrier for nasal vaccine delivery in mice. European Journal of Pharmaceutics and Biopharmaceutics; 2004; 57: 123-131.
[35] K. Khatri, A. K. Goyal, P. N. Gupta, N. Mishra & S. P. Vyas. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. International Journal of Pharmaceutics; 354: 235- 241, 2008.
[36] O. Borges, G. Borchard, A. de Sousa, H. E. Junginger & A. Cordeiro-da- Silva. Induction of lymphocytes activated maker CD69 following exposure to chitosan and alginate biopolymers. International Journal of Pharmaceutics; 337: 254-264, 2008.
[37] O. Borges, A. Cordeiro-da-Silva, J. Tavares, N. Santarem, A. Sousa, G. Borchard & H.E. Junginger. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. European Journal of Pharmaceutical and Biopharmaceutics; 69: 405-416, 2008.
[38] Y. Yang, J. Chen, H. Li, Y. Wang, Z. Xie, M. Wu, H. Zang, Z. Zhao. Porcine interleukin-2 gene encapsulated in chitosan nanoparticles enhances immune response of mice to piglet paratyphoid vaccine. Comparative Immunology, Microbiology & Infectious Diseases; 30: 19- 32, 2007.
[39] N. Hagennars, R. J. Verheul, I. Mooren, P. H. de Jong. Relationship between structure and adjuvanticity of N, N, N - Trimethyl chitosan (TMC) structural variants in a nasal influenza vaccine. Journal of controlled Release; 140:126-133, 2009.
[40] D. Coucke, M. Schotsaert, C. Libert, E. Pringels, C. Vervaet, P. Foreman, X. Saelens & J. P. Remon. Spray-dried powders of starch and crosslinked poly (acrylic acid) as carriers for nasal delivery of inactivated influenza vaccine. Vaccine; 27: 1279-1286, 2009.
[41] S. Shan, E. Poinern, T. Ellis, S. Fanwick, X. Le, J. Edward & J.T. Jiang. Development of a Nano vaccine against wild bird H6N2 avian influenza virus. Procedia in Vaccinology; 2: 40-43, 2010.
[42] L.V. Hiep, M.T. Thanh, D. T. H. Van, V. T. P. Khanh & N. A. Dzung. Chitosan as a hopeful adjuvant for H5N1 influenza vaccine. Journal Chitin and Chitosan; 13(10): 6-8, 2008.
[43] WHO. Egg-based influenza vaccine manufacturing course manual, 2009, Part II. Netherlands Vaccine Institute, Bilthoven, The Netherlands.
[44] M. L. Killian. Haemaglutinine assay for Avian influenza Virus, In Methods in Molecular Biology, Vol. 436: Avian Influenza Virus 2008; 47-56. Edited by Erica Spackman, Humana Press, Totowa, NY.
[45] M. Huang, C. W. Fong, E. Khor & Y. Y. Lim. Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. Journal of Controlled Release; 106: 391-406, 2005.
[46] VTTC. Quality Control of DPT Vaccines, chapter 6: Toxicity testing, RIVM, Netherland, 2000; 224-230.
[47] V. Kunzi, J. M. Klap, M. K. Seiberling, C. Herzog, K. Hartmann, O. Kusteiner, R. Kompier, R. Grimaldi, J. Goudsmit. Immunogenicity and safety of low dose virosomal adjuvant influenza vaccine administered intradermally compared to intramuscular full dose administration. Vaccine; 27: 3561-3567, 2009.
[48] M. Nishino, D. Mizuno, T. Kimoto, W. Shinahara, A. Fukuta, T. Takei, K. Sumida, S. Kitamura, H. Shiota, H. Kido. Influenza vaccine with Surfacten: a modified pulmonary surfactant, induce systemic and mucosal immune responses without side effect in minipig. Vaccine; 27: 5620-5627, 2009.