Search results for: cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3259

Search results for: cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM

1369 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel

Authors: Joseph C. Chen, Joshua Cox

Abstract:

This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.

Keywords: Taguchi parameter design, surface roughness, dimensional accuracy, Wire EDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
1368 Plasma Arc Burner for Pulverized Coal Combustion

Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava

Abstract:

Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.

Keywords: Coal combustion, plasma arc, plasma torches, pulverized coal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
1367 High Quality Speech Coding using Combined Parametric and Perceptual Modules

Authors: M. Kulesza, G. Szwoch, A. Czyżewski

Abstract:

A novel approach to speech coding using the hybrid architecture is presented. Advantages of parametric and perceptual coding methods are utilized together in order to create a speech coding algorithm assuring better signal quality than in traditional CELP parametric codec. Two approaches are discussed. One is based on selection of voiced signal components that are encoded using parametric algorithm, unvoiced components that are encoded perceptually and transients that remain unencoded. The second approach uses perceptual encoding of the residual signal in CELP codec. The algorithm applied for precise transient selection is described. Signal quality achieved using the proposed hybrid codec is compared to quality of some standard speech codecs.

Keywords: CELP residual coding, hybrid codec architecture, perceptual speech coding, speech codecs comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
1366 High Efficiency Solar Thermal Collectors Utilization in Process Heat: A Case Study of Textile Finishing Industry

Authors: Gökçen A. Çiftçioğlu, M. A. Neşet Kadırgan, Figen Kadırgan

Abstract:

Solar energy, since it is available every day, is seen as one of the most valuable renewable energy resources. Thus, the energy of sun should be efficiently used in various applications. The most known applications that use solar energy are heating water and spaces. High efficiency solar collectors need appropriate selective surfaces to absorb the heat. Selective surfaces (Selektif-Sera) used in this study are applied to flat collectors, which are produced by a roll to roll cost effective coating of nano nickel layers, developed in Selektif Teknoloji Co. Inc. Efficiency of flat collectors using Selektif-Sera absorbers are calculated in collaboration with Institute for Solar Technik Rapperswil, Switzerland. The main cause of high energy consumption in industry is mostly caused from low temperature level processes. There is considerable effort in research to minimize the energy use by renewable energy sources such as solar energy. A feasibility study will be presented to obtain the potential of solar thermal energy utilization in the textile industry using these solar collectors. For the feasibility calculations presented in this study, textile dyeing and finishing factory located at Kahramanmaras is selected since the geographic location was an important factor. Kahramanmaras is located in the south east part of Turkey thus has a great potential to have solar illumination much longer. It was observed that, the collector area is limited by the available area in the factory, thus a hybrid heating generating system (lignite/solar thermal) was preferred in the calculations of this study to be more realistic. During the feasibility work, the calculations took into account the preheating process, where well waters heated from 15 °C to 30-40 °C by using the hot waters in heat exchangers. Then the preheated water was heated again by high efficiency solar collectors. Economic comparison between the lignite use and solar thermal collector use was provided to determine the optimal system that can be used efficiently. The optimum design of solar thermal systems was studied depending on the optimum collector area. It was found that the solar thermal system is more economic and efficient than the merely lignite use. Return on investment time is calculated as 5.15 years.

Keywords: Solar energy, heating, solar heating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1228
1365 Determination of Yield and Yield Components of Fodder Beet (Beta vulgaris L. var. rapacea Koch.) Cultivars under the Konya Region Conditions

Authors: A. Özköse

Abstract:

This study was conducted to determination of yield and yield components of some fodder beet types (Amarilla Barres, Feldherr, Kyros, Magnum ve Rota) under the Konya region conditions. Fodder beet was obtained from the Selcuk University, Faculty of Agriculture, at 2006-2007 season and the experiment was established in a randomized complete block design with three replicates. Differences among the averages of the fodder beet cultivars are statistically important in terms of all the characteristics investigated. Leaf attitude value was 1.2 – 2.2 (1=erect; 5= prostrate), root shape scale value was (1=spheroidal – 9=cylindrical), root diameter 11.0 – 12.2cm, remaining part of root on the ground was 6.3 – 13.7cm, root length was 21.4 – 29.6cm, leaf yield 1592 – 1917 kg/da, root yield was 10083 – 12258 kg/da, root dry matter content was %8.2 – 18.6 and root dry matter yield was 889 – 1887 kg/da. As a result of the study, it was determined that fodder beet cultivars are different conditions in terms of yield and yield components. Therefore, determination of appropriate cultivars for each region affect crop yield importantly.

Keywords: Fodder beet, root yield, yield components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1364 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation

Authors: J. Chen, N. Hundal

Abstract:

Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.

Keywords: Surface roughness, taguchi parameter design, turning center, turn-milling operations, vertical machining center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
1363 Effect of Flowrate and Coolant Temperature on the Efficiency of Progressive Freeze Concentration on Simulated Wastewater

Authors: M. Jusoh, R. Mohd Yunus, M. A. Abu Hassan

Abstract:

Freeze concentration freezes or crystallises the water molecules out as ice crystals and leaves behind a highly concentrated solution. In conventional suspension freeze concentration where ice crystals formed as a suspension in the mother liquor, separation of ice is difficult. The size of the ice crystals is still very limited which will require usage of scraped surface heat exchangers, which is very expensive and accounted for approximately 30% of the capital cost. This research is conducted using a newer method of freeze concentration, which is progressive freeze concentration. Ice crystals were formed as a layer on the designed heat exchanger surface. In this particular research, a helical structured copper crystallisation chamber was designed and fabricated. The effect of two operating conditions on the performance of the newly designed crystallisation chamber was investigated, which are circulation flowrate and coolant temperature. The performance of the design was evaluated by the effective partition constant, K, calculated from the volume and concentration of the solid and liquid phase. The system was also monitored by a data acquisition tool in order to see the temperature profile throughout the process. On completing the experimental work, it was found that higher flowrate resulted in a lower K, which translated into high efficiency. The efficiency is the highest at 1000 ml/min. It was also found that the process gives the highest efficiency at a coolant temperature of -6 °C.

Keywords: Freeze concentration, progressive freeze concentration, freeze wastewater treatment, ice crystals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
1362 Analysis of the Effect of HV Transmission Lines on the Control Room and its Proposed Shielding

Authors: Diako Azizi, Hosein Heydari, Ahmad Gholami

Abstract:

Today with the rapid growth of telecommunications equipment, electronic and developing more and more networks of power, influence of electromagnetic waves on one another has become hot topic discussions. So in this article, this issue and appropriate mechanisms for EMC operations have been presented. First, impact of high voltage lines on the surrounding environment especially on the control room has been investigated, then to reduce electromagnetic radiation, various methods of shielding are provided and shielding effectiveness of them has been compared. It should be expressed that simulations have been done by the finite element method (FEM).

Keywords: Electrical field, EMC, field distribution, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
1361 Global Chaos Synchronization of Identical and Nonidentical Chaotic Systems Using Only Two Nonlinear Controllers

Authors: Azizan Bin Saaban, Adyda Binti Ibrahim, Mohammad Shehzad, Israr Ahmad

Abstract:

In chaos synchronization, the main goal is to design such controller(s) that synchronizes the states of master and slave system asymptotically globally. This paper studied and investigated the synchronization problem of two identical Chen, and identical Tigan chaotic systems and two non-identical Chen and Tigan chaotic systems using Non-linear active control algorithm. In this study, based on Lyapunov stability theory and using non-linear active control algorithm, it has been shown that the proposed schemes have excellent transient performance using only two nonlinear controllers and have shown analytically as well as graphically that synchronization is asymptotically globally stable.

Keywords: Nonlinear Active Control, Chen and Tigan Chaotic systems, Lyapunov Stability theory, Synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
1360 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR power plants commercially generate steam directly and indirectly in order to produce electricity with high technical efficiency and lower its costs. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the DSG of the LFR. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: Concentrated Solar Power, Levelized cost of electricity, Linear Fresnel reflectors, Steam generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176
1359 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function

Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan

Abstract:

Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.

Keywords: Combustion Duration, crank angle, mass fraction burnt, producer gas, wiebe combustion model, wide open throttle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
1358 Trap Assisted Tunneling Model for Gate Current in Nano Scale MOSFET with High-K Gate Dielectrics

Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor

Abstract:

This paper presents a new compact analytical model of the gate leakage current in high-k based nano scale MOSFET by assuming a two-step inelastic trap-assisted tunneling (ITAT) process as the conduction mechanism. This model is based on an inelastic trap-assisted tunneling (ITAT) mechanism combined with a semiempirical gate leakage current formulation in the BSIM 4 model. The gate tunneling currents have been calculated as a function of gate voltage for different gate dielectrics structures such as HfO2, Al2O3 and Si3N4 with EOT (equivalent oxide thickness) of 1.0 nm. The proposed model is compared and contrasted with santaurus simulation results to verify the accuracy of the model and excellent agreement is found between the analytical and simulated data. It is observed that proposed analytical model is suitable for different highk gate dielectrics simply by adjusting two fitting parameters. It was also shown that gate leakages reduced with the introduction of high-k gate dielectric in place of SiO2.

Keywords: Analytical model, High-k gate dielectrics, inelastic trap assisted tunneling, metal–oxide–semiconductor (MOS) devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291
1357 Optic Disc Detection by Earth Mover's Distance Template Matching

Authors: Fernando C. Monteiro, Vasco Cadavez

Abstract:

This paper presents a method for the detection of OD in the retina which takes advantage of the powerful preprocessing techniques such as the contrast enhancement, Gabor wavelet transform for vessel segmentation, mathematical morphology and Earth Mover-s distance (EMD) as the matching process. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Vessel segmentation method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel-s feature vector. Feature vectors are composed of the pixel-s intensity and 2D Gabor wavelet transform responses taken at multiple scales. A simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity using the EMD. The minimum distance provides an estimate of the OD center coordinates. The method-s performance is evaluated on publicly available DRIVE and STARE databases. On the DRIVE database the OD center was detected correctly in all of the 40 images (100%) and on the STARE database the OD was detected correctly in 76 out of the 81 images, even in rather difficult pathological situations.

Keywords: Diabetic retinopathy, Earth Mover's distance, Gabor wavelets, optic disc detection, retinal images

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
1356 Modeling the Transport of Charge Carriers in the Active Devices MESFET, Based of GaInP by the Monte Carlo Method

Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi

Abstract:

The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
1355 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite

Authors: Zheng Dian Xun, Cheng Bo, Lin Hetong

Abstract:

This paper focuses on the orbit avoidance strategy of the optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. This paper explores the strategy of satellite avoidance to protect the CCD camera and also the satellite. The satellite could evasive to several target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. In addition, the fuel consumption is optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.

Keywords: Optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
1354 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication

Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi

Abstract:

Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.

Keywords: Hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
1353 Behavioral Study of TCSC Device – A MATLAB/Simulink Implementation

Authors: S. Meikandasivam, Rajesh Kumar Nema, Shailendra Kumar Jain

Abstract:

A basic conceptual study of TCSC device on Simulink is a teaching aid and helps in understanding the rudiments of the topic. This paper thus stems out from basics of TCSC device and analyzes the impedance characteristics and associated single & multi resonance conditions. The Impedance characteristics curve is drawn for different values of inductance in MATLAB using M-files. The study is also helpful in estimating the appropriate inductance and capacitance values which have influence on multi resonance point in TCSC device. The capacitor voltage, line current, thyristor current and capacitor current waveforms are discussed briefly as simulation results. Simulink model of TCSC device is given and corresponding waveforms are analyzed. The subsidiary topics e.g. power oscillation damping, SSR mitigation and transient stability is also brought out.

Keywords: TCSC device, Impedance characteristics, Resonance point, Simulink model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431
1352 Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear

Authors: Inês Boticas, Diana P. Ferreira, Ana Eusébio, Carlos Silva, Pedro Magalhães, Ricardo Silva, Raul Fangueiro

Abstract:

Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.

Keywords: Breathability, sportswear and casual clothing, sustainable design, superhydrophobicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
1351 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board

Authors: Anil Kumar Pandey

Abstract:

Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.

Keywords: Channel simulation, electromagnetic simulation, power-aware signal integrity analysis, power integrity, PIPro.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
1350 Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide

Authors: Sanaz Seraj, Shohre Rouhani

Abstract:

Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare.

Keywords: Fluorescence, graphene oxide, naphthalimide dye, quenching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
1349 Analysis of Different Designed Landing Gears for a Light Aircraft

Authors: Essam A. Al-Bahkali

Abstract:

The design of a landing gear is one of the fundamental aspects of aircraft design. The need for a light weight, high strength, and stiffness characteristics coupled with techno economic feasibility are a key to the acceptability of any landing gear construction. In this paper, an approach for analyzing two different designed landing gears for an unmanned aircraft vehicle (UAV) using advanced CAE techniques will be applied. Different landing conditions have been considered for both models. The maximum principle stresses for each model along with the factor of safety are calculated for every loading condition. A conclusion is drawing about better geometry.

Keywords: Landing Gear, Model, Finite Element Analysis, Aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5373
1348 Evaluation on Mechanical Stabilities of Clay-Sand Mixtures Used as Engineered Barrier for Radioactive Waste Disposal

Authors: Ahmet E. Osmanlioglu

Abstract:

In this study, natural bentonite was used as natural clay material and samples were taken from the Kalecik district in Ankara. In this research, bentonite is the subject of an analysis from standpoint of assessing the basic properties of engineered barriers with respect to the buffer material. Bentonite and sand mixtures were prepared for tests. Some of clay minerals give relatively higher hydraulic conductivity and lower swelling pressure. Generally, hydraulic conductivity of these type clays is lower than <10-12 m/s. The hydraulic properties of clay-sand mixtures are evaluated to design engineered barrier specifications. Hydraulic conductivities of bentonite-sand mixture were found in the range of 1.2x10-10 to 9.3x10-10 m/s. Optimum B/S mixture ratio was determined as 35% in terms of hydraulic conductivity and mechanical stability. At the second stage of this study, all samples were compacted into cylindrical shape molds (diameter: 50 mm and length: 120 mm). The strength properties of compacted mixtures were better than the compacted bentonite. In addition, the larger content of the quartz sand in the mixture has the greater thermal conductivity.

Keywords: Bentonite, hydraulic conductivity, clay, nuclear waste disposal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
1347 Zero Voltage Switched Full Bridge Converters for the Battery Charger of Electric Vehicle

Authors: Rizwan Ullah, Abdar Ali, Zahid Ullah

Abstract:

This paper illustrates the study of three isolated zero voltage switched (ZVS) PWM full bridge (FB) converters to charge the high voltage battery in the charger of electric vehicle (EV). EV battery chargers have several challenges such as high efficiency, high reliability, low cost, isolation, and high power density. The cost of magnetic and filter components in the battery charger is reduced when switching frequency is increased. The increase in the switching frequency increases switching losses. ZVS is used to reduce switching losses and to operate the converter in the battery charger at high frequency. The performance of each of the three converters is evaluated on the basis of ZVS range, dead times of the switches, conduction losses of switches, circulating current stress, circulating energy, duty cycle loss, and efficiency. The limitations and merits of each PWM FB converter are reviewed. The converter with broader ZVS range, high efficiency and low switch stresses is selected for battery charger applications in EV.

Keywords: Electric vehicle, PWM FB converter, zero voltage switching, circulating energy, duty cycle loss, battery charger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
1346 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments

Authors: A. Kampker, K. Kreisköther, C. Reinders

Abstract:

Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.

Keywords: Additive manufacturing, design of experiments, mold making, PolyJet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
1345 Design of Nonlinear Observer by Using Augmented Linear System based on Formal Linearization of Polynomial Type

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

The objective of this study is to propose an observer design for nonlinear systems by using an augmented linear system derived by application of a formal linearization method. A given nonlinear differential equation is linearized by the formal linearization method which is based on Taylor expansion considering up to the higher order terms, and a measurement equation is transformed into an augmented linear one. To this augmented dimensional linear system, a linear estimation theory is applied and a nonlinear observer is derived. As an application of this method, an estimation problem of transient state of electric power systems is studied, and its numerical experiments indicate that this observer design shows remarkable performances for nonlinear systems.

Keywords: nonlinear system, augmented linear system, nonlinear observer, formal linearization, electric power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
1344 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz

Abstract:

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Keywords: Nonlinear optics, propagation equation, plasmonic waveguide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
1343 Thailand National Biodiversity Database System with webMathematica and Google Earth

Authors: W. Katsarapong, W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee

Abstract:

National Biodiversity Database System (NBIDS) has been developed for collecting Thai biodiversity data. The goal of this project is to provide advanced tools for querying, analyzing, modeling, and visualizing patterns of species distribution for researchers and scientists. NBIDS data record two types of datasets: biodiversity data and environmental data. Biodiversity data are specie presence data and species status. The attributes of biodiversity data can be further classified into two groups: universal and projectspecific attributes. Universal attributes are attributes that are common to all of the records, e.g. X/Y coordinates, year, and collector name. Project-specific attributes are attributes that are unique to one or a few projects, e.g., flowering stage. Environmental data include atmospheric data, hydrology data, soil data, and land cover data collecting by using GLOBE protocols. We have developed webbased tools for data entry. Google Earth KML and ArcGIS were used as tools for map visualization. webMathematica was used for simple data visualization and also for advanced data analysis and visualization, e.g., spatial interpolation, and statistical analysis. NBIDS will be used by park rangers at Khao Nan National Park, and researchers.

Keywords: GLOBE protocol, Biodiversity, Database System, ArcGIS, Google Earth and webMathematica.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1342 Development of Synthetic Jet Air Blower for Air-breathing PEM Fuel Cell

Authors: Jongpil Choi, Eon-Soo Lee, Jae-Huk Jang, Young Ho Seo, Byeonghee Kim

Abstract:

This paper presents a synthetic jet air blower actuated by PZT for air blowing for air-breathing micro PEM fuel cell. The several factors to affect the performance of air-breathing PEM fuel cell such as air flow rate, opening ratio and cathode open type in the cathode side were studied. Especially, an air flow rate is critical condition to improve its performance. In this paper, we developed a synthetic jet air blower to supply a high stoichiometric air flow. The synthetic jet mechanism is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. The flow rate of the fabricated synthetic jet air blower was 400cc/min at 550Hz and its power consumption was very low under 0.3W. The proposed air-breathing PEM fuel cell which installed synthetic jet air blower was higher performance and stability during continuous operation than the air-breathing fuel cell without auxiliary device to supply the air. The results showed that the maximum power density was 188mW/cm2 at 400mA/cm2. This maximum power density and durability were improved more than 40% and 20%, respectively.

Keywords: Air-breathing PEM fuel cell, Synthetic jet air blower, Opening ratio, Power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
1341 Exploring the Narrative Communication: Representing Visual Information from Digital Travel Stories

Authors: Rocío Abascal-Mena, Erick López-Ornelas

Abstract:

We present the results of a case study aiming to assess the reflection of the tourism community in the Web and its usability to propose new ways to communicate visually. The wealth of information contained in the Web and the clear facilities to communicate personals points of view makes of the social web a new space of exploration. In this way, social web allow the sharing of information between communities with similar interests. However, the tourism community remains unexplored as is the case of the information covered in travel stories. Along the Web, we find multiples sites allowing the users to communicate their experiences and personal points of view of a particular place of the world. This cultural heritage is found in multiple documents, usually very little supplemented with photos, so they are difficult to explore due to the lack of visual information. This paper explores the possibility of analyzing travel stories to display them visually on maps and generate new knowledge such as patterns of travel routes. This way, travel narratives published in electronic formats can be very important especially to the tourism community because of the great amount of knowledge that can be extracted. Our approach is based on the use of a Geoparsing Web Service to extract geographic coordinates from travel narratives in order to draw the geo-positions and link the documents into a map image.

Keywords: Social web, tourism community, visual communication, travel stories, geo references.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1340 Solar Architecture of Low-Energy Buildings for Industrial Applications

Authors: P. Brinks, O. Kornadt, R. Oly

Abstract:

This research focuses on the optimization of glazed surfaces and the assessment of possible solar gains in industrial buildings. Existing window rating methods for single windows were evaluated and a new method for a simple analysis of energy gains and losses by single windows was introduced. Furthermore extensive transient building simulations were carried out to appraise the performance of low cost polycarbonate multi-cell sheets in interaction with typical buildings for industrial applications. Mainly energy saving potential was determined by optimizing the orientation and area of such glazing systems in dependency on their thermal qualities. Moreover the impact on critical aspects such as summer overheating and daylight illumination was considered to ensure the user comfort and avoid additional energy demand for lighting or cooling. Hereby the simulated heating demand could be reduced by up to 1/3 compared to traditional architecture of industrial halls using mainly skylights.

Keywords: Solar Architecture, Passive Solar Building Design, Glazing, Low-Energy Buildings, Industrial Buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965