Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5179

Search results for: Nonlinear Active Control

5179 Optimal Controllers with Actuator Saturation for Nonlinear Structures

Authors: M. Mohebbi, K. Shakeri

Abstract:

Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.

Keywords: Active control, Actuator Saturation, Distributedgeneticalgorithms, Nonlinear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
5178 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames

Authors: M. Mohebbi, K. Shakeri

Abstract:

The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.

Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
5177 Genetic Algorithm Based Approach for Actuator Saturation Effect on Nonlinear Controllers

Authors: M. Mohebbi, K. Shakeri

Abstract:

In the real application of active control systems to mitigate the response of structures subjected to sever external excitations such as earthquake and wind induced vibrations, since the capacity of actuators is limited then the actuators saturate. Hence, in designing controllers for linear and nonlinear structures under sever earthquakes, the actuator saturation should be considered as a constraint. In this paper optimal design of active controllers for nonlinear structures by considering the actuator saturation has been studied. To this end a method has been proposed based on defining an optimization problem which considers the minimizing of the maximum displacement of the structure as objective when a limited capacity for actuator has been used as a constraint in optimization problem. To evaluate the effectiveness of the proposed method, a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of pre-stressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used as active control mechanism and algorithm. To enhance the efficiency of the controllers, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been found by using the Distributed Genetic Algorithm (DGA). According to the results it has been concluded that the proposed method has been effective in considering the actuator saturation in designing optimal controllers for nonlinear frames. Also it has been shown that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers for considering the actuator saturation.

Keywords: Active control, Actuator Saturation, Nonlinear, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
5176 Fuzzy PID Controller with Coupled Rules for a Nonlinear Quarter Car Model

Authors: Şaban Çetin, Özgür Demir

Abstract:

In this study, Fuzzy PID Control scheme is designed for an active suspension system. The main goal of an active suspension system for using in a vehicle model is reducing body deflections and handling high comfort for a passenger car. The present system was modelled as a two-degree-of-freedom (2-DOF) nonlinear vehicle model.

Keywords: Active suspension system, Fuzzy PID controller, a nonlinear quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
5175 Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode

Authors: Mahdi Kiani, Hassan Salarieh, Aria Alasty, S. Mahdi Darbandi

Abstract:

The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems.

Keywords: Active magnetic bearing, three pole AMB, hybrid control, Lyapunov function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
5174 Global Chaos Synchronization of Identical and Nonidentical Chaotic Systems Using Only Two Nonlinear Controllers

Authors: Azizan Bin Saaban, Adyda Binti Ibrahim, Mohammad Shehzad, Israr Ahmad

Abstract:

In chaos synchronization, the main goal is to design such controller(s) that synchronizes the states of master and slave system asymptotically globally. This paper studied and investigated the synchronization problem of two identical Chen, and identical Tigan chaotic systems and two non-identical Chen and Tigan chaotic systems using Non-linear active control algorithm. In this study, based on Lyapunov stability theory and using non-linear active control algorithm, it has been shown that the proposed schemes have excellent transient performance using only two nonlinear controllers and have shown analytically as well as graphically that synchronization is asymptotically globally stable.

Keywords: Nonlinear Active Control, Chen and Tigan Chaotic systems, Lyapunov Stability theory, Synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
5173 Nonlinear Dynamic Modeling and Active Vibration Control of a System with Fuel Sloshing

Authors: A. A. Jafari, A. M. Khoshnood, J. Roshanian

Abstract:

Attitude control of aerospace system with liquid containers may face to a problem associate with fuel sloshing. The sloshing phenomena can degrade the stability of control system and in the worst case, interaction between the attitude control system and fuel vibration leading to resonance. In this paper, a full process of nonlinear dynamic modeling of an aerospace launch vehicle with fuel sloshing is given. Then, a new control system based on model reference adaptive filter is proposed and its algorithm is extracted. This controller implemented on the main attitude control system. Finally, numerical simulation of nonlinear model and control system is carried out to examine the performance of the new controller. Results of simulations show that the inconvenient effects of the fuel sloshing by augmenting this control system are reduced and attitude control system performs, satisfactorily.

Keywords: nonlinear dynamic modeling, fuel sloshing, vibration control, model reference, adaptive filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
5172 Nonlinear Controller Design for Active Front Steering System

Authors: Iman Mousavinejad, Reza Kazemi, , Mohsen Bayani Khaknejad

Abstract:

Active Front Steering system (AFS) provides an electronically controlled superposition of an angle to the steering wheel angle. This additional degree of freedom enables a continuous and driving-situation dependent on adaptation of the steering characteristics. In an active steering system, there needs be no fixed relationship between the steering wheel and the angle of the road wheels. Not only can the effective steering ratio be varied with speed, for example, but also the road wheel angles can be controlled by a combination of driver and computer inputs. Features like steering comfort, effort and steering dynamics are optimized and stabilizing steering interventions can be performed. In contrast to the conventional stability control, the yaw rate was fed back to AFS controller and the stability performance was optimized with Sliding Mode control (SMC) method. In addition, tire uncertainties have been taken into account in SM controller to provide the control robustness. In this paper, 3-DOF nonlinear model is used to design the AFS controller and 8-DOF nonlinear model is used to model the controlled vehicle.

Keywords: Active Front Steering (AFS), Sliding Mode Control method (SMC), Yaw rate, Vehicle Stability, Robustness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3276
5171 An Approach to Control Design for Nonlinear Systems via Two-stage Formal Linearization and Two-type LQ Controls

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

In this paper we consider a nonlinear control design for nonlinear systems by using two-stage formal linearization and twotype LQ controls. The ordinary LQ control is designed on almost linear region around the steady state point. On the other region, another control is derived as follows. This derivation is based on coordinate transformation twice with respect to linearization functions which are defined by polynomials. The linearized systems can be made up by using Taylor expansion considered up to the higher order. To the resulting formal linear system, the LQ control theory is applied to obtain another LQ control. Finally these two-type LQ controls are smoothly united to form a single nonlinear control. Numerical experiments indicate that this control show remarkable performances for a nonlinear system.

Keywords: Formal Linearization, LQ Control, Nonlinear Control, Taylor Expansion, Zero Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
5170 Design and Instrumentation of a Benchmark Multivariable Nonlinear Control Laboratory

Authors: S. H. Teh, S. Malawaraarachci, W. P. Chan, A. Nassirharand

Abstract:

The purpose of this paper is to present the design and instrumentation of a new benchmark multivariable nonlinear control laboratory. The mathematical model of this system may be used to test the applicability and performance of various nonlinear control procedures. The system is a two degree-of-freedom robotic arm with soft and hard (discontinuous) nonlinear terms. Two novel mechanisms are designed to allow the implementation of adjustable Coulomb friction and backlash.

Keywords: Nonlinear control, describing functions, AdjustableCoulomb friction, Adjustable backlash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
5169 Design of Active Power Filters for Harmonics on Power System and Reducing Harmonic Currents

Authors: Düzgün Akmaz, Hüseyin Erişti

Abstract:

In the last few years, harmonics have been occurred with the increasing use of nonlinear loads, and these harmonics have been an ever increasing problem for the line systems. This situation importantly affects the quality of power and gives large losses to the network. An efficient way to solve these problems is providing harmonic compensation through parallel active power filters. Many methods can be used in the control systems of the parallel active power filters which provide the compensation. These methods efficiently affect the performance of the active power filters. For this reason, the chosen control method is significant. In this study, Fourier analysis (FA) control method and synchronous reference frame (SRF) control method are discussed. These control methods are designed for both eliminate harmonics and perform reactive power compensation in MATLAB/Simulink pack program and are tested. The results have been compared for each two methods.

Keywords: Harmonics, Harmonic compensation, Parallel active power filters, Power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3225
5168 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: Wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
5167 Vibration Control of MDOF Structure under Earthquake Excitation using Passive Control and Active Control

Authors: M. Reza Bagerzadeh Karimi, M. Mahdi Bagerzadeh Karimi

Abstract:

In the present paper, active control system is used in different heights of the building and the most effective part was studied where the active control system is applied. The mathematical model of the building is established in MATLAB and in order to active control the system FLC method was used. Three different locations of the building are chosen to apply active control system, namely at the lowest story, the middle height of the building, and at the highest point of the building with TMD system. The equation of motion was written for high rise building and it was solved by statespace method. Also passive control was used with Tuned Mass Damper (TMD) at the top floor of the building to show the robustness of FLC method when compared with passive control system.

Keywords: Fuzzy Logic Controller (FLC), Tuned Mass Damper(TMD), Active control, passive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2636
5166 Iterative Learning Control of Two Coupled Nonlinear Spherical Tanks

Authors: A. R. Tavakolpour-Saleh, A. R. Setoodeh, E. Ansari

Abstract:

This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then, dynamic responses of the control system corresponding to different step inputs are investigated. It is found that the conventional PID control is not able to fulfill the design criteria such as desired time constant. Consequently, an iterative learning controller is proposed to accurately control the coupled nonlinear tanks system. The simulation results clearly demonstrate the superiority of the presented ILC approach over the conventional PID controller to cope with the nonlinearities presented in the dynamic system.

Keywords: Iterative learning control, spherical tanks, nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
5165 A New Nonlinear PID Controller and its Parameter Design

Authors: Yongping Ren, Zongli Li, Fan Zhang

Abstract:

A new nonlinear PID controller and its stability analysis are presented in this paper. A nonlinear function is deduced from the similarities between the control effort and the electric-field effect of a capacitor. The conventional linear PID controller can be modified into a nonlinear one by this function. To analyze the stability of the nonlinear PID controlled system, an idea of energy equivalence is adapted to avoid the conservativeness which is usually arisen from some traditional theorems and Criterions. The energy equivalence is naturally related with the conceptions of Passivity and T-Passivity. As a result, an engineering guideline for the parameter design of the nonlinear PID controller is obtained. An inverted pendulum system is tested to verify the nonlinear PID control scheme.

Keywords: Nonlinear PID controller, stability, gain equivalence, dissipative, T-Passivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3109
5164 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designed the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
5163 Computer Simulations of an Augmented Automatic Choosing Control Using Automatic Choosing Functions of Gradient Optimization Type

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the automatic choosing functions of gradient optimization type for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by minimizing the Hamiltonian with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
5162 Adaptive Fuzzy Control of a Nonlinear Tank Process

Authors: A. R. Tavakolpour-Saleh, H. Jokar

Abstract:

Liquid level control of conical tank system is known to be a great challenge in many industries such as food processing, hydrometallurgical industries and wastewater treatment plant due to its highly nonlinear characteristics. In this research, an adaptive fuzzy PID control scheme is applied to the problem of liquid level control in a nonlinear tank process. A conical tank process is first modeled and primarily simulated. A PID controller is then applied to the plant model as a suitable benchmark for comparison and the dynamic responses of the control system to different step inputs were investigated. It is found that the conventional PID controller is not able to fulfill the controller design criteria such as desired time constant due to highly nonlinear characteristics of the plant model. Consequently, a nonlinear control strategy based on gain-scheduling adaptive control incorporating a fuzzy logic observer is proposed to accurately control the nonlinear tank system. The simulation results clearly demonstrated the superiority of the proposed adaptive fuzzy control method over the conventional PID controller.

Keywords: Adaptive control, fuzzy logic, conical tank, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
5161 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
5160 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation

Authors: A. Yanik, U. Aldemir

Abstract:

This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.

Keywords: Bridge structures, passive control, seismic, semi-active control, viscous damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
5159 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
5158 Adaptive Nonlinear Backstepping Control

Authors: Sun Lim, Bong-Seok Kim

Abstract:

This paper presents an adaptive nonlinear position controller with velocity constraint, capable of combining the input-output linearization technique and Lyapunov stability theory. Based on the Lyapunov stability theory, the adaptation law of the proposed controller is derived along with the verification of the overall system-s stability. Computer simulation results demonstrate that the proposed controller is robust and it can ensure transient stability of BLDCM, under the occurrence of a large sudden fault.

Keywords: BLDC Motor Control, Backstepping Control, Adaptive nonlinear control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
5157 Retaining Structural System Active Vibration Control

Authors: Ming-Hui Lee, Shou-Jen Hsu

Abstract:

This study presents an active vibration control technique to reduce the earthquake responses of a retained structural system. The proposed technique is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. The AIEM can estimate an unknown system input online. The LQG controller offers optimal control forces to suppress wall-structural system vibration. The numerical results show robust performance in the active vibration control technique.

Keywords: Active vibration control, AIEM, LQG, Optimal control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
5156 Design of a Three Phase Active Power Filter with Sliding Mode Control and Energy Feedback

Authors: M. Nayeripour, T. Niknam

Abstract:

Nonlinear and unbalance loads in three phase networks create harmonics and losses. Active and passive filters are used for elimination or reduction of these effects. Passive filters have some limitations. For example, they are designed only for a specific frequency and they may cause to resonance in the network at the point of common coupling. The other drawback of a passive filter is that the sizes of required elements are normally large. The active filter can improve some of limitations of passive filter for example; they can eliminate more than one harmonic and don't cause resonance in the network. In this paper inverter analysis have been done simultaneously in three phase and the RL impedance of the line have been considered. A sliding mode control based on energy feedback of capacitors is employed in the design with this method, the dynamic speed of the filter is improved effectively and harmonics and load unbalance is compensating quickly.

Keywords: Shunt active filter, harmonic, inverter, sliding mode control, energy feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
5155 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation

Authors: Sun Lim, Il-Kyun Jung

Abstract:

This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.

Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
5154 Nonlinear Model Predictive Swing-Up and Stabilizing Sliding Mode Controllers

Authors: S. Kahvecioglu, A. Karamancioglu, A. Yazici

Abstract:

In this paper, a nonlinear model predictive swing-up and stabilizing sliding controller is proposed for an inverted pendulum-cart system. In the swing up phase, the nonlinear model predictive control is formulated as a nonlinear programming problem with energy based objective function. By solving this problem at each sampling instant, a sequence of control inputs that optimize the nonlinear objective function subject to various constraints over a finite horizon are obtained. Then, this control drives the pendulum to a predefined neighborhood of the upper equilibrium point, at where sliding mode based model predictive control is used to stabilize the systems with the specified constraints. It is shown by the simulations that, due to the way of formulating the problem, short horizon lengths are sufficient for attaining the swing up goal.

Keywords: Inverted pendulum, model predictive control, swingup, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
5153 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input

Authors: Toshinori Nawata, Hitoshi Takata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented Automatic Choosing Control, NonlinearControl, Genetic Algorithm, Hamiltonian, Lyapunovfunction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
5152 Variable Structure Model Reference Adaptive Control for Vehicle Steering System

Authors: Ardeshir Karami Mohammadi, Mohammadreza Saee

Abstract:

A variable structure model reference adaptive control (VS-MRAC) strategy for active steering assistance of a two wheel steering car is proposed. An ideal steering system with fixed properties and moving on an ideal road is used as the reference model, and the active steering assistance system is forced to attain the same behavior as the reference model. The proposed system can treat the nonlinear relationships between the side slip angles and lateral forces on tire, and the uncertainties on friction of the road surface, whose compensation are very important under critical situations. Simulation results show improvements on yaw rate and side slip.

Keywords: Variable Structure, Adaptive Control, Model reference, Active steering assistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
5151 Active Disturbance Rejection Control for Wind System Based On a DFIG

Authors: R. Chakib, A. Essadki, M. Cherkaoui

Abstract:

This paper proposes the study of a robust control of the doubly fed induction generator (DFIG) used in a wind energy production. The proposed control is based on the linear active disturbance rejection control (ADRC) and it is applied to the control currents rotor of the DFIG, the DC bus voltage and active and reactive power exchanged between the DFIG and the network. The system under study and the proposed control are simulated using MATLAB/SIMULINK.

Keywords: Doubly fed induction generator DFIG, Active disturbance rejection control ADRC, Vector control, MPPT, Extended state observer, back to back converter, Wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
5150 Sprayer Boom Active Suspension Using Intelligent Active Force Control

Authors: M. Tahmasebi, R.A. Rahman, M. Mailah, M. Gohari

Abstract:

The control of sprayer boom undesired vibrations pose a great challenge to investigators due to various disturbances and conditions. Sprayer boom movements lead to reduce of spread efficiency and crop yield. This paper describes the design of a novel control method for an active suspension system applying proportional-integral-derivative (PID) controller with an active force control (AFC) scheme integration of an iterative learning algorithm employed to a sprayer boom. The iterative learning as an intelligent method is principally used as a method to calculate the best value of the estimated inertia of the sprayer boom needed for the AFC loop. Results show that the proposed AFC-based scheme performs much better than the standard PID control technique. Also, this shows that the system is more robust and accurate.

Keywords: Active force control, sprayer boom, active suspension, iterative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232