Search results for: surface water quality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6548

Search results for: surface water quality

4928 Application of Central Composite Design Based Response Surface Methodology in Parameter Optimization and on Cellulase Production Using Agricultural Waste

Authors: R.Muthuvelayudham, T.Viruthagiri

Abstract:

Response Surface Methodology (RSM) is a powerful and efficient mathematical approach widely applied in the optimization of cultivation process. Cellulase enzyme production by Trichoderma reesei RutC30 using agricultural waste rice straw and banana fiber as carbon source were investigated. In this work, sequential optimization strategy based statistical design was employed to enhance the production of cellulase enzyme through submerged cultivation. A fractional factorial design (26-2) was applied to elucidate the process parameters that significantly affect cellulase production. Temperature, Substrate concentration, Inducer concentration, pH, inoculum age and agitation speed were identified as important process parameters effecting cellulase enzyme synthesis. The concentration of lignocelluloses and lactose (inducer) in the cultivation medium were found to be most significant factors. The steepest ascent method was used to locate the optimal domain and a Central Composite Design (CCD) was used to estimate the quadratic response surface from which the factor levels for maximum production of cellulase were determined.

Keywords: Banana fiber, Cellulase, Optimization, Rice straw

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
4927 Lightweight Mirrors for Space X-Ray Telescopes

Authors: M. Mika, L. Pina, M. Landova, L. Sveda, R. Havlikova, V. Marsikova, R. Hudec, A. Inneman

Abstract:

Future astronomical projects on large space x-ray imaging telescopes require novel substrates and technologies for the construction of their reflecting mirrors. The mirrors must be lightweight and precisely shaped to achieve large collecting area with high angular resolution. The new materials and technologies must be cost-effective. Currently, the most promising materials are glass or silicon foils. We focused on precise shaping these foils by thermal forming process. We studied free and forced slumping in the temperature region of hot plastic deformation and compared the shapes obtained by the different slumping processes. We measured the shapes and the surface quality of the foils. In the experiments, we varied both heat-treatment temperature and time following our experiment design. The obtained data and relations we can use for modeling and optimizing the thermal forming procedure.

Keywords: Glass, silicon, thermal forming, x-ray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
4926 A Parametric Study on the Backwater Level Due to a Bridge Constriction

Authors: S. Atabay, T. A. Ali, Md. M. Mortula

Abstract:

This paper presents the results and findings from a parametric study on the water surface elevation at upstream of bridge constriction for subcritical flow. In this study, the influence of Manning's Roughness Coefficient of main channel (nmc) and floodplain (nfp), and bridge opening (b) flow rate (Q), contraction (kcon) and expansion coefficients (kexp) were investigated on backwater level. The DECK bridge models with different span widths and without any pier were investigated within the two stage channel having various roughness conditions. One of the most commonly used commercial one-dimensional HEC-RAS model was used in this parametric study. This study showed that the effects of main channel roughness (nmc) and flow rate (Q) on the backwater level are much higher than those of the floodplain roughness (nfp). Bridge opening (b) with contraction (kcon) and expansion coefficients (kexp) have very little effect on the backwater level within this range of parameters.

Keywords: Bridge backwater, parametric study and waterways.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
4925 CO2 Sequestration Potential of Construction and Demolition Alkaline Waste Material in Indian Perspective

Authors: G.Anjali, M.Bhavya, N.Arvind Kumar

Abstract:

In order to avoid the potentially devastating consequences of global warming and climate change, the carbon dioxide “CO2" emissions caused due to anthropogenic activities must be reduced considerably. This paper presents the first study examining the feasibility of carbon sequestration in construction and demolition “C&D" waste. Experiments were carried out in a self fabricated Batch Reactor at 40ºC, relative humidity of 50-70%, and flow rate of CO2 at 10L/min for 1 hour for water-to-solids ratio of 0.2 to 1.2. The effect of surface area was found by comparing the theoretical extent of carbonation of two different sieve sizes (0.3mm and 2.36mm) of C&D waste. A 38.44% of the theoretical extent of carbonation equating to 4% CO2 sequestration extent was obtained for C&D waste sample for 0.3mm sieve size. Qualitative, quantitative and morphological analyses were done to validate carbonate formation using X-ray diffraction “X.R.D.," thermal gravimetric analysis “T.G.A., “X-Ray Fluorescence Spectroscopy “X.R.F.," and scanning electron microscopy “S.E.M".

Keywords: Alkaline waste, construction and demolition waste, CO2 sequestration, mineral carbonation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
4924 Identifying Karst Pattern to Prevent Bell Spring from Being Submerged in Daryan Dam Reservoir

Authors: H. Shafaattalab Dehghani, H. R. Zarei

Abstract:

The large karstic Bell spring with a discharge ranging between 250 and 5300 lit/ sec is one of the most important springs of Kermanshah Province. This spring supplies drinking water of Nodsheh City and its surrounding villages. The spring is located in the reservoir of Daryan Dam and its mouth would be submerged after impounding under a water column of about 110 m height. This paper has aimed to render an account of the karstification pattern around the spring under consideration with the intention of preventing Bell Spring from being submerged in Daryan Dam Reservoir. The studies comprise engineering geology and hydrogeology investigations. Some geotechnical activities included in these studies include geophysical studies, drilling, excavation of exploratory gallery and shaft and diving. The results depict that Bell is a single-conduit siphon spring with 4 m diameter and 85 m height that 32 m of the conduit is located below the spring outlet. To survive the spring, it was decided to plug the outlet and convey the water to upper elevations under the natural pressure of the aquifer. After plugging, water was successfully conveyed to elevation 837 meter above sea level (about 120 m from the outlet) under the natural pressure of the aquifer. This signifies the accuracy of the studies done and proper recognition of the karstification pattern of Bell Spring. This is a unique experience in karst problems in Iran.

Keywords: Bell spring, karst, Daryan Dam, submerged.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
4923 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber

Authors: Shunya Wakayama, Kazuya Okubo, Toru Fujii, Daisuke Sakata, Noriyuki Kado, Hiroshi Furutachi

Abstract:

The purpose of this study is to propose an effective method to improve frictional coefficient between shoe rubber soles with added glass fibers and the surfaces of icy and snowy road in order to prevent slip-and-fall accidents by the users. The additional fibers into the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angles were -60, -30, +30, +60, 90 degrees and 0 (as normal specimen), respectively. It was found that parallel arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while perpendicular to normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at critical frictional state and adequate scratching of fibers when fibers were protruded in perpendicular to frictional direction, respectively. Most effective angle of tilting of frictional coefficient between rubber specimens and a stone was perpendicular (= 0 degree) to frictional direction. Combinative modified rubber specimen having 2 layers was fabricated where tilting angle of protruded fibers was 0 degree near the contact surface and tilting angle of embedded fibers was 90 degrees near back surface in thickness direction to further improve the frictional coefficient. Current study suggested that effective arraignments in tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for users in regions of cold climates.

Keywords: Frictional coefficient, icy and snowy road, shoe rubber soles, tilting angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
4922 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Burn-up, heavy water reactor, minor actinides, Monte Carlo, proliferation resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
4921 Salinity Reduction from Saharan Brackish Water by Fluoride Removal on Activated Natural Materials: A Comparative Study

Authors: Amina Ramadni, Safia Taleb, André Dératani

Abstract:

The present study presents, firstly, to characterize the physicochemical quality of brackish groundwater of the Terminal Complex (TC) from the region of Eloued-souf and to investigate the presence of fluoride, and secondly, to study the comparison of adsorbing power of three materials, such as (activated alumina AA, sodium clay SC and hydroxyapatite HAP) against the groundwater in the region of Eloued-souf. To do this, a sampling campaign over 16 wells and consumer taps was undertaken. The results show that the groundwater can be characterized by very high fluoride content and excessive mineralization that require in some cases, specific treatment before supply. The study of adsorption revealed removal efficiencies fluoride by three adsorbents, maximum adsorption is achieved after 45 minutes at 90%, 83.4% and 73.95%, and with an adsorbed fluoride content of 0.22 mg/L, 0.318 mg/L and 0.52 mg/L for AA, HAP and SC, respectively. The acidity of the medium significantly affects the removal fluoride. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. The adsorption tests by adsorbent materials show that the physicochemical characteristics of brackish water are changed after treatment. The adsorption mechanism is an exchange between the OH- ions and fluoride ions. Three materials are proving to be effective adsorbents for fluoride removal that could be developed into a viable technology to help reduce the salinity of the Saharan hyper-fluorinated waters. Finally, a comparison between the results obtained from the different adsorbents allowed us to conclude that the defluoridation by AA is the process of choice for many waters of the region of Eloued-souf, because it was shown to be a very interesting and promising technique.

Keywords: Fluoride removal, groundwater, hydrochemical characterization, natural materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
4920 A Study on the Introduction of Wastewater Reuse Facility in Military Barracks by Cost-Benefit Analysis

Authors: D. G. Jung, J. B. Lim, J. H. Kim, J. J. Kim

Abstract:

The international society focuses on the environment protection and natural energy sources control for the global cooperation against weather change and sustainable growth. The study presents the overview of the water shortage status and the necessity of wastewater reuse facility in military facilities and for the possibility of the introduction, compares the economics by means of cost-benefit analysis. The military features such as the number of users of military barracks and the water use were surveyed by the design principles by facility types, the application method of wastewater reuse facility was selected, the feed water, its application and the volume of reuse volume were defined and the expectation was estimated, confirming the possibility of introducing a wastewater reuse possibility by means of cost-benefit analysis.

Keywords: military barracks, wastewater reuse facility, cost-benefit analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
4919 Simultaneous Treatment and Catalytic Gasification of Olive Mill Wastewater under Supercritical Conditions

Authors: Ekin Kıpçak, Sinan Kutluay, Mesut Akgün

Abstract:

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which has a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1 MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water is investigated with the use of Pt/Al2O3 and Ni/Al2O3 catalysts. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. All of the catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C), under a constant pressure of 25 MPa. For the experiments conducted with Ni/Al2O3 catalyst, the effect of five reaction times (30, 60, 90, 120 and 150 s) was investigated. However, procuring that similar gasification efficiencies could be obtained at shorter times, the experiments were made by using different reaction times (10, 15, 20, 25 and 30 s) for the case of Pt/Al2O3 catalyst. Through these experiments, the effects of temperature, time and catalyst type on the gasification yields and treatment efficiencies were investigated.

Keywords: Catalyst, Gasification, Olive mill wastewater, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
4918 Effect of Temperature on the Water Retention Capacity of Liner Materials

Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla

Abstract:

Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.

Keywords: Soil water retention curve, sand-expansive clay mixture, suction, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642
4917 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates

Authors: R. Deju, M. Mincu, D. Gurau

Abstract:

During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.

Keywords: Leaching behaviour, recycling of radioactive concrete, waste management, gamma-ray spectrometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
4916 The Quality Maintenance and Extending Storage Life of Mango Fruit after Postharvest Treatments

Authors: Orathai Wongmetha, Lih-Shang Ke

Abstract:

The quality attributes and storage life of 'Jinhwang' mango fruit can be effectively maintained with 1-methylcyclopropene (1-MCP) application and/or chitosan coating. 'Jinhwang' mango fruit was treated with 5 μl l-1 1-MCP for 12 h, dipped with 0.5 % chitosan, 5 μl l-1 1-MCP combine with 0.5 % chitosan and untreated (control) then stored at 10oC. Mango treated with 1-MCP maintained firmness, sucrose and starch content. Chitosan coating delayed firmness loss, sucrose content and the fruit decay when compare with control. Application of 1-MCP combine with chitosan also delayed firmness loss, sucrose content and starch content during storage. Furthermore, chitosan coating and combine treatment prolonged storage life of mango up to 29 days after storage while 1-MCP extended to 28 days after storage. Therefore, using all application of chitosan coating or 1-MCP combine with chitosan or 1-MCP in mango at 10oC is a feasible technology for maintains quality and prolongs storage life in order to expand marketability and export options.

Keywords: 1-Methylcyclopropene (1-MCP), chitosan, quality, storage life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3943
4915 Three-Phase High Frequency AC Conversion Circuit with Dual Mode PWM/PDM Control Strategy for High Power IH Applications

Authors: Nabil A. Ahmed

Abstract:

This paper presents a novel three-phase utility frequency to high frequency soft switching power conversion circuit with dual mode pulse width modulation and pulse density modulation for high power induction heating applications as melting of steel and non ferrous metals, annealing of metals, surface hardening of steel and cast iron work pieces and hot water producers, steamers and super heated steamers. This high frequency power conversion circuit can operate from three-phase systems to produce high current for high power induction heating applications under the principles of ZVS and it can regulate its ac output power from the rated value to a low power level. A dual mode modulation control scheme based on high frequency PWM in synchronization with the utility frequency positive and negative half cycles for the proposed high frequency conversion circuit and utility frequency pulse density modulation is produced to extend its soft switching operating range for wide ac output power regulation. A dual packs heat exchanger assembly is designed to be used in consumer and industrial fluid pipeline systems and it is proved to be suitable for the hot water, steam and super heated steam producers. Experiment and simulation results are given in this paper to verify the operation principles of the proposed ac conversion circuit and to evaluate its power regulation and conversion efficiency. Also, the paper presents a mutual coupling model of the induction heating load instead of equivalent transformer circuit model.

Keywords: Induction heating, three-phase, conversion circuit, pulse width modulation, pulse density modulation, high frequency, soft switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
4914 Creating 3D Models Using Infrared Thermography with Remotely Piloted Aerial Systems

Authors: P. van Tonder, C. C. Kruger

Abstract:

Concrete structures deteriorate over time and degradation escalates due to various factors. The rate of deterioration can be complex and unpredictable in nature. Such deteriorations may be located beneath the surface of the concrete at high elevations. This emphasizes the need for an efficient method of finding such defects to be able to assess the severity thereof. Current methods using thermography to find defects require equipment to reach higher elevations. This could become costly and time consuming not to mention the risks involved in having personnel scaffold or abseiling at such heights. Accordingly, by combining the thermal camera needed for thermography and a remotely piloted aerial system (Drone/RPAS), it could be used to alleviate some of the issues mentioned. Images can be translated into a 3D temperature model to aid concrete diagnostics and with further research can relate back to the mechanical properties of the structure but will not be dealt with in this paper. Such diagnostics includes finding delamination, similar to finding delamination on concrete decks, which resides beneath the surface of the concrete before spalling can occur. Delamination can be caused by reinforcement eroding and causing expansion beneath the concrete surface. This could lead to spalling, where concrete pieces start breaking off from the main concrete structure.

Keywords: Concrete, diagnostic, infrared thermography, 3D thermal models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 410
4913 Wear Behavior of Commercial Aluminium Engine Block and Piston under Dry Sliding Condition

Authors: M. S. Kaiser, Swagata Dutta

Abstract:

In the present work, the effect of load and sliding distance on the performance tribology of commercially used aluminium-silicon engine block and piston was evaluated at ambient conditions with humidity of 80% under dry sliding conditions using a pin-on-disc with two different loads of 5N and 20N yielding applied pressure of 0.30MPa and 1.4MPa, respectively, at sliding velocity of 0.29ms-1 and with varying sliding distance ranging from 260m- 4200m. Factors and conditions that had significant effect were identified. The results showed that the load and the sliding distance affect the wear rate of the alloys and the wear rate increased with increasing load for both the alloys. Wear rate also increases almost linearly at low loads and increase to a maximum then attain a plateau with increasing sliding distance. For both applied loads the piston alloy showed the better performance due to higher Ni and Mg content. The worn surface and wear debris was characterized by optical microscope, SEM and EDX analyzer. The worn surface was characterized by surface with shallow grooves at loads while the groove width and depth increased as the loads increases. Oxidative wear was found to be the predominant mechanisms in the dry sliding of Al-Si alloys at low loads.

Keywords: Wear, friction, gravimetric analysis, aluminiumsilicon alloys, SEM, EDX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
4912 The Extraction and Stripping of Hg (II) from Produced Water via Hollow Fiber Contactor

Authors: Dolapop Sribudda, Ura Pancharoen

Abstract:

The separation of Hg (II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a countercurrent flow. Samples were kept in the outlet of feed and stripping solution at 1 hour and characterized concentration of Hg (II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg (II) were 98% and 44.2%, respectively.

Keywords: Hg (II), hollow fiber contactor, produced water, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
4911 Natural Gas Dehydration Process Simulation and Optimization: A Case Study of Khurmala Field in Iraqi Kurdistan Region

Authors: R. Abdulrahman, I. Sebastine

Abstract:

Natural gas is the most popular fossil fuel in the current era and future as well. Natural gas is existed in underground reservoirs so it may contain many of non-hydrocarbon components for instance, hydrogen sulfide, nitrogen and water vapor. These impurities are undesirable compounds and cause several technical problems for example, corrosion and environment pollution. Therefore, these impurities should be reduce or removed from natural gas stream. Khurmala dome is located in southwest Erbil-Kurdistan region. The Kurdistan region government has paid great attention for this dome to provide the fuel for Kurdistan region. However, the Khurmala associated natural gas is currently flaring at the field. Moreover, nowadays there is a plan to recover and trade this gas and to use it either as feedstock to power station or to sell it in global market. However, the laboratory analysis has showed that the Khurmala sour gas has huge quantities of H2S about (5.3%) and CO2 about (4.4%). Indeed, Khurmala gas sweetening process has been removed in previous study by using Aspen HYSYS. However, Khurmala sweet gas still contents some quintets of water about 23 ppm in sweet gas stream. This amount of water should be removed or reduced. Indeed, water content in natural gas cause several technical problems such as hydrates and corrosion. Therefore, this study aims to simulate the prospective Khurmala gas dehydration process by using Aspen HYSYS V. 7.3 program. Moreover, the simulation process succeeded in reducing the water content to less than 0.1ppm. In addition, the simulation work is also achieved process optimization by using several desiccant types for example, TEG and DEG and it also study the relationship between absorbents type and its circulation rate with HCs losses from glycol regenerator tower.

Keywords: Aspen Hysys, Process simulation, gas dehydration, process optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8972
4910 The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits

Authors: Violina R. Angelova, Sava G. Tabakov, Aleksander B. Peltekov, Krasimir I. Ivanov

Abstract:

A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on areas at a different distance from the source of pollution NFMW- Plovdiv (1 km, 3.5 km, and 15 km). The concentrations of macroelements, microelements, and heavy metals in Aronia fruits were determined. The dry matter content, ash, sugars, proteins, and fats were also determined. Aronia is a crop that is tolerant to heavy metals and can successfully be grown on soils contaminated with heavy metals. The increased content of heavy metals in the soil leads to less absorption of the nutrients (Ca, Mg and P) in the fruit of the Aronia. Soil pollution with heavy metals does not affect the quality of the Aronia fruit varieties.

Keywords: Aronia, chemical composition, fruits, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
4909 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: Audit, machine learning, assessment, metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030
4908 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow

Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani

Abstract:

Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.

Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
4907 Plasmonic Absorption Enhancement in Au/CdS Nanocomposite

Authors: K. Easawi, M. Nabil, T. Abdallah, S. Negm, H. Talaat

Abstract:

Composite nanostructures of metal core/semiconductor shell (Au/CdS) configuration were prepared using organometalic method. UV-Vis spectra for the Au/CdS colloids show initially two well separated bands, corresponding to surface plasmon of the Au core, and the exciton of CdS shell. The absorption of CdS shell is enhanced, while the Au plasmon band is suppressed as the shell thickness increases. The shell sizes were estimated from the optical spectra using the effective mass approximation model (EMA), and compared to the sizes of the Au core and CdS shell measured by high resolution transmission electron microscope (HRTEM). The changes in the absorption features are discussed in terms of gradual increase in the coupling strength of the Au core surface plasmon and the exciton in the CdS. leading to charge transfer and modification of electron oscillation in Au core.

Keywords: Nanocomposites, Plasmonics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459
4906 Effect of Exercise on Sexual Behavior and Semen Quality of Sahiwal Bulls

Authors: Abdelrasoul, Khalid Ahmed Elrabie

Abstract:

The study was conducted on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to determine the effect of exercise on the sexual behavior and semen quality. Fourteen Sahiwal bulls were classified into two groups of seven each. Group-1, bulls were exercised by walking in a bull exerciser once a week one hour before semen collection, whereas bulls in group-2 were exercised daily. Sexual behavior and semen quality traits studied were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-2 showed significantly (p < 0.01) higher value in RT (sec), DMT (sec), TTTM (sec), ES, PS, ITS, LS, semen volume, semen color density and mass activity.

Keywords: Exercise, Sahiwal bulls, semen quality, sexual behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
4905 Strategy in Controlling Rice-Field Conversion in Pangkep Regency, South Sulawesi, Indonesia

Authors: Nurliani, Ida Rosada

Abstract:

The national rice consumption keeps increasing along with raising income of the households and the rapid growth of population. However, food availability, particularly rice, is limited. Impacts of rice-field conversion have run cumulatively, as we can see on potential losses of rice and crops production, as well as work opportunity that keeps increasing year-by-year. Therefore, it requires policy recommendation to control rice-field conversion through economic, social, and ecological approaches. The research was a survey method intended to: (1) Identify internal factors; quality and productivity of the land as the cause of land conversion, (2) Identify external factors of land conversion, value of the rice-field and the competitor’s land, workforce absorption, and regulation, as well as (3) Formulate strategies in controlling rice-field conversion. Population of the research was farmers who applied land conversion at Pangkep Regency, South Sulawesi. Samples were determined using the incidental sampling method. Data analysis used productivity analysis, land quality analysis, total economic value analysis, and SWOT analysis. Results of the research showed that the quality of rice-field was low as well as productivity of the grains (unhulled-rice). So that, average productivity of the grains and quality of rice-field were low as well. Total economic value of rice-field was lower than the economic value of the embankment. Workforce absorption value on rice-field was higher than on the embankment. Strategies in controlling such rice-field conversion can be done by increasing rice-field productivity, improving land quality, applying cultivation technique of specific location, improving the irrigation lines, and socializing regulation and sanction about the transfer of land use.

Keywords: Land conversion, quality of rice-field, land economic value, strategy in controlling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
4904 Geometric Modeling of Illumination on the TFT-LCD Panel using Bezier Surface

Authors: Kyong-min Lee, Moon Soo Chang, PooGyeon Park

Abstract:

In this paper, we propose a geometric modeling of illumination on the patterned image containing etching transistor. This image is captured by a commercial camera during the inspection of a TFT-LCD panel. Inspection of defect is an important process in the production of LCD panel, but the regional difference in brightness, which has a negative effect on the inspection, is due to the uneven illumination environment. In order to solve this problem, we present a geometric modeling of illumination consisting of an interpolation using the least squares method and 3D modeling using bezier surface. Our computational time, by using the sampling method, is shorter than the previous methods. Moreover, it can be further used to correct brightness in every patterned image.

Keywords: Bezier, defect, geometric modeling, illumination, inspection, LCD, panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
4903 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation

Authors: Pratch Kittipongpattana, Thongchai Fongsamootr

Abstract:

This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.

Keywords: Boiler water wall tube, Finite element, Stress analysis, Strain gage rosette.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
4902 Temporal Variation of Surface Runoff and Inter-Rill Erosion in Different Soil Textures of a Semi-Arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Inter-rill erosion is the detachment and transfer of soil particles between the rills which occurs due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of inter-rill erosion during a rainfall event and the effect of soil properties on it can help develop better methods to soil conservation in the hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and inter-rill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. Soil properties including particle size distribution, aggregate stability, bulk density, exchangeable sodium percentages (ESP) and hydraulic conductivity (Ks) were determined in the soil samples. Correlation and regression analysis was done to determine the effect of soil properties on runoff and inter-rill erosion. Results indicated that the study soils have lower both organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher ESP. Runoff production and soil loss did not occur in sand texture, which was associated with higher infiltration and drainage rates. A strong relationship was found between inter-rill erosion and surface runoff (R2 = 0.75, p < 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, Ks, lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more inter-rill erosion. In the soils, surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: Erosion plot, rainfall simulator, soil properties, surface flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
4901 Urban Areas Management in Developing Countries: Analysis of the Urban Areas Crossed with Risk of Storm Water Drains, Aswan-Egypt

Authors: Omar Hamdy, Schichen Zhao, Hussein Abd El-Atty, Ayman Ragab, Muhammad Salem

Abstract:

One of the most risky areas in Aswan is Abouelreesh, which is suffering from flood disasters, as heavy deluge inundates urban areas causing considerable damage to buildings and infrastructure. Moreover, the main problem was the urban sprawl towards this risky area. This paper aims to identify the urban areas located in the risk areas prone to flash floods. Analyzing this phenomenon needs a lot of data to ensure satisfactory results; however, in this case the official data and field data were limited, and therefore, free sources of satellite data were used. This paper used ArcGIS tools to obtain the storm water drains network by analyzing DEM files. Additionally, historical imagery in Google Earth was studied to determine the age of each building. The last step was to overlay the urban area layer and the storm water drains layer to identify the vulnerable areas. The results of this study would be helpful to urban planners and government officials to make the disasters risk estimation and develop primary plans to recover the risky area, especially urban areas located in torrents.

Keywords: Risk area, DEM, storm water drains, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
4900 Influence of the Entropic Parameter on the Flow Geometry and Morphology

Authors: D. Mirauda, M. Greco, A. Volpe Plantamura

Abstract:

The necessity of updating the numerical models inputs, because of geometrical and resistive variations in rivers subject to solid transport phenomena, requires detailed control and monitoring activities. The human employment and financial resources of these activities moves the research towards the development of expeditive methodologies, able to evaluate the outflows through the measurement of more easily acquirable sizes. Recent studies highlighted the dependence of the entropic parameter on the kinematical and geometrical flow conditions. They showed a meaningful variability according to the section shape, dimension and slope. Such dependences, even if not yet well defined, could reduce the difficulties during the field activities, and also the data elaboration time. On the basis of such evidences, the relationships between the entropic parameter and the geometrical and resistive sizes, obtained through a large and detailed laboratory experience on steady free surface flows in conditions of macro and intermediate homogeneous roughness, are analyzed and discussed.

Keywords: Froude number, entropic parameter, roughness, water discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
4899 Chromium-Leaching Study of Cements in Various Environments

Authors: Adriana Estokova, Lenka Palascakova, Martina Kovalcikova

Abstract:

Cement is a basic material used for building construction. Chromium as an indelible non-volatile trace element of raw materials occurs in cement clinker in the trivalent or hexavalent form. Hexavalent form of chromium is harmful and allergenic having very high water solubility and thus can easily come into contact with the human skin. The paper is aimed at analyzing the content of total chromium in Portland cements and leaching rate of hexavalent chromium in various leachants: Deionized water, Britton-Robinson buffer, used to simulate the natural environment, and hydrochloric acid (HCl). The concentration of total chromium in Portland cement samples was in a range from 173.2 to 218.5 mg/kg. The content of dissolved hexavalent chromium ranged 0.23-3.19, 2.0-5.78 and 8.88-16.25 mg/kg in deionized water, Britton-Robinson solution and hydrochloric acid, respectively. The calculated leachable fraction of Cr(VI) from cement samples was observed in the range 0.1--7.58 %.

Keywords: Cement, hexavalent chromium, leaching, total chromium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342