WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/1630,
	  title     = {Natural Gas Dehydration Process Simulation and Optimization: A Case Study of Khurmala Field in Iraqi Kurdistan Region},
	  author    = {R. Abdulrahman and  I. Sebastine},
	  country	= {},
	  institution	= {},
	  abstract     = {Natural gas is the most popular fossil fuel in the
current era and future as well. Natural gas is existed in underground
reservoirs so it may contain many of non-hydrocarbon components
for instance, hydrogen sulfide, nitrogen and water vapor. These
impurities are undesirable compounds and cause several technical
problems for example, corrosion and environment pollution.
Therefore, these impurities should be reduce or removed from natural
gas stream. Khurmala dome is located in southwest Erbil-Kurdistan
region. The Kurdistan region government has paid great attention for
this dome to provide the fuel for Kurdistan region. However, the
Khurmala associated natural gas is currently flaring at the field.
Moreover, nowadays there is a plan to recover and trade this gas and
to use it either as feedstock to power station or to sell it in global
market. However, the laboratory analysis has showed that the
Khurmala sour gas has huge quantities of H2S about (5.3%) and CO2
about (4.4%). Indeed, Khurmala gas sweetening process has been
removed in previous study by using Aspen HYSYS. However,
Khurmala sweet gas still contents some quintets of water about 23
ppm in sweet gas stream. This amount of water should be removed or
reduced. Indeed, water content in natural gas cause several technical
problems such as hydrates and corrosion. Therefore, this study aims
to simulate the prospective Khurmala gas dehydration process by
using Aspen HYSYS V. 7.3 program. Moreover, the simulation
process succeeded in reducing the water content to less than 0.1ppm.
In addition, the simulation work is also achieved process
optimization by using several desiccant types for example, TEG and
DEG and it also study the relationship between absorbents type and
its circulation rate with HCs losses from glycol regenerator tower.},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {7},
	  number    = {6},
	  year      = {2013},
	  pages     = {350 - 353},
	  ee        = {https://publications.waset.org/pdf/1630},
	  url   	= {https://publications.waset.org/vol/78},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 78, 2013},
	}