Search results for: Plasmonics.
5 CMOS-Compatible Plasmonic Nanocircuits for On-Chip Integration
Authors: Shiyang Zhu, G. Q. Lo, D. L. Kwong
Abstract:
Silicon photonics is merging as a unified platform for driving photonic based telecommunications and for local photonic based interconnect but it suffers from large footprint as compared with the nanoelectronics. Plasmonics is an attractive alternative for nanophotonics. In this work, two CMOS compatible plasmonic waveguide platforms are compared. One is the horizontal metal-insulator-Si-insulator-metal nanoplasmonic waveguide and the other is metal-insulator-Si hybrid plasmonic waveguide. Various passive and active photonic devices have been experimentally demonstrated based on these two plasmonic waveguide platforms.
Keywords: Plasmonics, on-chip integration, Silicon photonics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22064 Improved Plasmonic Demultiplexer Based on Tapered and Rectangular Slot MIM Waveguide
Authors: Aso Rahimzadegan, Seyyed Poorya Hosseini, Kamran Qaderi
Abstract:
In this paper, we have proposed two novel plasmonic demultiplexing structures based on metal-insulator-metal surfaces which, beside their compact size, have a very good transmission spectrum. The impact of the key internal parameters on the transmission spectrum is numerically analyzed by using the twodimensional (2D) finite difference time domain (FDTD) method. The proposed structures could be used to develop ultra-compact photonic wavelength demultiplexing devices for large-scale photonic integration.
Keywords: Photonic integrated devices, Plasmonics, Metalinsulator- metal (MIM) waveguide, Demultiplexers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20783 Plasmonic Absorption Enhancement in Au/CdS Nanocomposite
Authors: K. Easawi, M. Nabil, T. Abdallah, S. Negm, H. Talaat
Abstract:
Composite nanostructures of metal core/semiconductor shell (Au/CdS) configuration were prepared using organometalic method. UV-Vis spectra for the Au/CdS colloids show initially two well separated bands, corresponding to surface plasmon of the Au core, and the exciton of CdS shell. The absorption of CdS shell is enhanced, while the Au plasmon band is suppressed as the shell thickness increases. The shell sizes were estimated from the optical spectra using the effective mass approximation model (EMA), and compared to the sizes of the Au core and CdS shell measured by high resolution transmission electron microscope (HRTEM). The changes in the absorption features are discussed in terms of gradual increase in the coupling strength of the Au core surface plasmon and the exciton in the CdS. leading to charge transfer and modification of electron oscillation in Au core.Keywords: Nanocomposites, Plasmonics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24582 CMOS-Compatible Silicon Nanoplasmonics for On-Chip Integration
Authors: Shiyang Zhu, Guo-Qiang Lo, Dim-Lee Kwong
Abstract:
Although silicon photonic devices provide a significantly larger bandwidth and dissipate a substantially less power than the electronic devices, they suffer from a large size due to the fundamental diffraction limit and the weak optical response of Si. A potential solution is to exploit Si plasmonics, which may not only miniaturize the photonic device far beyond the diffraction limit, but also enhance the optical response in Si due to the electromagnetic field confinement. In this paper, we discuss and summarize the recently developed metal-insulator-Si-insulator-metal nanoplasmonic waveguide as well as various passive and active plasmonic components based on this waveguide, including coupler, bend, power splitter, ring resonator, MZI, modulator, detector, etc. All these plasmonic components are CMOS compatible and could be integrated with electronic and conventional dielectric photonic devices on the same SOI chip. More potential plasmonic devices as well as plasmonic nanocircuits with complex functionalities are also addressed.
Keywords: Silicon nanoplasmonics, Silicon nanophotonics, Onchip integration, CMOS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19051 High Gain Broadband Plasmonic Slot Nano-Antenna
Authors: H. S. Haroyan, V. R. Tadevosyan
Abstract:
High gain broadband plasmonic slot nano-antenna has been considered. The theory of plasmonic slot nano-antenna (PSNA) has been developed. The analytical model takes into account also the electrical field inside the metal due to imperfectness of metal in optical range, as well as numerical investigation based on finite element method (FEM) has been realized. It should be mentioned that Yagi-Uda configuration improves directivity in the plane of structure. In contrast, in this paper the possibility of directivity improvement of proposed PSNA in perpendicular plane of structure by using reflection metallic surface placed under the slot in fixed distance has been demonstrated. It is well known that a directivity improvement brings to the antenna gain increasing. This method of diagram improving is also well known from RF antenna design theory. Moreover the improvement of directivity in the perpendicular plane gives more flexibility in such application as improving the light and atom, ion, molecule interactions by using such type of plasmonic slot antenna. By the analogy of dipole type optical antennas the widening of working wavelengths has been realized by using bowtie geometry of slots, which made the antenna broadband.
Keywords: Broadband antenna, high gain, slot nano-antenna, plasmonics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381