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Abstract—The usage of machine learning models for prediction
is growing rapidly and proof that the intended requirements
are met is essential. Audits are a proven method to determine
whether requirements or guidelines are met. However, machine
learning models have intrinsic characteristics, such as the quality
of training data, that make it difficult to demonstrate the required
behavior and make audits more challenging. This paper describes
an ML audit framework that evaluates and reviews the risks of
machine learning applications, the quality of the training data,
and the machine learning model. We evaluate and demonstrate
the functionality of the proposed framework by auditing an steel
plate fault prediction model.
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I. INTRODUCTION

MACHINE LEARNING (ML) and Artificial Intelligence

(AI) are increasingly used in many sectors of the

economy. Especially in areas such as automation, sensor

technology, assistance systems, predictive maintenance and

resource management. AI-based applications have been

implemented particularly successfully in these areas [1]. The

technology thus makes a decisive contribution to securing or

improving the respective market position. However, this is

accompanied by various risks based on ”black box” modeling

as a basic principle of AI. Conventional computer programs

process data by explicit instructions or commands defined

by software to solve a problem. In contrast, AI is based

on independent learning processes, creating system autonomy,

which leads to completely new approaches to problem solving.

The complexity of machine learning algorithms used makes it

difficult or currently impossible for data scientists to follow

the decisions made by the machine learning algorithm.

Therefore, there is no guarantee that an AI application

will always reliably deliver good results. However, this is a

requirement that must be met by an autonomous vehicle, for

example. A common question that arises in the area of critical
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AI applications is how to prove safety while at the same time

not knowing how the software will behave.

First of all, you need to know the risk, secondly you need to

know what the requirements are for your AI-based application,

and thirdly you need to have a development process that

guarantees that the requirements are met. In order to achieve

high quality of your AI application, so that the customer keeps

a high level of trust in the product and legal problems are

avoided, an audit framework is required to ensure that the AI

application meets the requirements.

This paper is structured as follows: Section II gives an

overview of the related work. Then the paper refers to the

ML-specific audit III and refines the ML assessment of data,

ML model and development process in IV. In Section V an

audit framework is introduced and evaluated in Section VI.

Finally, a conclusion is drawn in Section VII.

II. RELATED WORK

This section has been divided in a) ML testing frameworks

for predictive models, b) metrics for data quality, c) metrics

for ML models d) data and ML model fairness:

a) There is little work on testing predictive models. Most

of them focus on the quality assessment of predictive models,

which is an important part of an audit, but not all of it.

An overview on benchmarking machine learning devices and

software frameworks can be found in Wei et. al [2]. Nishi et

al. [3] developed a quality assurance framework for machine

learning products and their underlining model. The framework

consists of a set of metrics that define model quality, a

model evaluation strategy, and development lifecycle testing

to maintain model quality. Bhatt et al. [4] point out that an

audit framework should include evaluation of the conceptual

soundness of the model, monitoring, and benchmarking of the

model, and should provide result analysis. Zhang et al. [5] give

a comprehensive overview of the state of the art in the field

of machine learning testing. Workflows to be tested, metrics

and characteristics of machine learning are presented.

b) Auditing machine learning models requires a known

quality of the test data. Stewart et al. [6] show in detail the

impact of poor data quality on different machine learning

algorithms and their accuracy and performance. Schelter

et al. [7] provide an overview of process, models and

metrics for validating the quality of labeled data against

application-specific requirements. Barrett et al. [8] propose
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methods and metrics to evaluate and improve the quality of

hand labeled data using statistical approaches.

c) Regarding the metrics for evaluating the quality of

machine learning, Handelman et al. [9] provide an overview

and evaluation of metrics of machine learning models for

gaining insight into the machine learning model. Noise

sensitivity [10] or robustness [11], [12] are important metrics

in an audit.

d) Another recent research area related to audits is the

fairness of machine learning algorithms. Rick et. al [13]

investigated how well different forms of audit are suitable for

this purpose. Not only predictive models were considered, but

potentially all algorithms for decision making. The object of

an audit would be understood as a black box. In order to

achieve transparency, works of Waltl et. al [14] or Arrieta et.

al [15] where used, which try to explain the mechanisms of

the neural network within the black box.

III. MACHINE LEARNING SPECIFIC AUDIT

The audit process includes the following steps: a) Planning,

b) Definition of audit objectives and scope, c) Collection

and evaluation of evidence, d) Documentation and reporting.

Is necessary to understand that there is a trade-off between

costs and risks that management must accept. The nature

of ML-based applications differs from traditional software

in several features. Before a risk assessment for the audit

objectives and scope can be performed, some general

objectives must be described, which are determined by the

nature of ML-based applications.

A. General Objectives of Machine Learning Audit

Like any algorithm- and data-driven process, ML gives the

internal audit a clear role in ensuring accuracy and reliability.

ML can only function properly if it analyzes good data and

evaluates it against valid criteria - areas where internal audit

can have a positive impact. An audit is a formal review

of an item or process with the objective of examining the

enforcement of policies and guidelines to mitigate risk (see

next section III-B). The nature of ML-based applications

imposes some additional objectives:

• ML applications should be classified into different risk

classes. Depending on the risk, they can then be approved,

reviewed or even continuously monitored.

• The testing of ML systems with high or very high

risk should be carried out by independent testing

organizations. The risk-based approach is an established

procedure of the European Single Market to combine

security and innovation.

• A prerequisite for the manufacturer-independent testing

of algorithmic systems is access to the safety-relevant

data required for this purpose (e.g. data for driver

assistance systems in cars).

• Continuous verification is necessary for the learning of

ML systems, since variations of the data (newly collected

data) lead to new models.

• Besides the verification of ML models, verification data

is essential.

  B. Risk Assessment for Audit Objectives and Scope 
for Machine Learning based Application

There are ML opportunities and risks [16], which can

be divided into economic risks, such as the acceptance of

AI-based applications by the client, etc., and technical risks.

Technical risks are of utmost interest to be considered in an

audit process.

• Logical Error: Like any software, ML is subject to the

risk of logic and implementation errors. This can affect

the effectiveness of algorithms, which can lead to a

reduced quality of results and thus to massive impacts

on the application context.

• Human Factor and Biases: There is a risk that

unintentional human bias may be introduced into the

design of the AI. Due to the lack of knowledge of a

domain, data for the training of neural networks might

be missing, which reduces the quality of the result. The

results of neural networks are interpreted by humans and

should not be taken for granted (e.g. in cancer diagnosis).

• Data Quality: The quality of ML results depends on

the input data, therefore the input data quality is

crucial. Achieving data quality involves checking for

consistency, balance, robustness, accuracy, compatibility,

completeness, timeliness, and duplicate or corrupted data

sets. The training data must be representative of the real

data, in particular it must be ensured that the sampling

rate is appropriate. It must also be considered that the

data sets are noisy, have outliers, missing values and

duplicates.

For example, robustness means safe behavior despite

unexpected or abnormal input data [17]. It should be

ensured that the intelligent system containing an ML

model is safe to operate with acceptable risk. If the model,

in the example in Fig. 1, receives an unexpected image

(e.g., darker image) instead of the trained image of a

traffic situation, it must not attempt to recognize it as a

new traffic situation. The operating limits defined by the

data set used for the training must be taken into account.

Fig. 1 Error of Autonomous Vehicle, because of Brightness Changes [18]

• Model Quality: Modeling quality describes how well an

ML model reflects reality and thus fulfills its purpose. It
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considers how accurate the predictions of a predictive

model are. When testing the modeling quality, the

predictions of the predictive model for several test data

are compared with the correct values, the ground truth

[14]. As Fig. 2 shows, the comparison of the predictions

ŷ and the ground truth is y*. Ideally the result of the

black box is identical to the ground truth. ML model

metrics try to quantify the expected difference to the

ground truth. The model must be correct (correct ML

type and architecture) - otherwise it will never fit the

data well, no matter how long the training phase will be

or how good the data might be.

Fig. 2 Black Box Model Predicting the Ground Truth

• Cyber Security: Digital attackers get an additional attack

vector by using AI. The integrity of ML models could

be compromised, e.g., noise is added to an X-ray image,

thereby turning predictions from normal scan to abnormal

[19], or confidentiality could be compromised, e.g.,

private training data used to train the algorithm has

been restored and faces have been reconstructed [20].

Furthermore, the type of information processed (personal

/ sensitive company data) can be an additional motivation

for attacks.

• Compliance: National and international legislation is

not (yet) fully adapted to the use of AI. This leads

to partially unclear legal situations and legal risks for

the involved actors. At the same time, there are strict

regulations for parts of the AI, e.g. in connection with the

mass processing of personal data by the European Data

Protection Basic Regulation (DSGVO). Non-compliance

with the requirements in this sensitive area is sanctioned

with heavy fines.

IV. MACHINE LEARNING ASSESSMENT: DATA, MODEL,

DEVELOPMENT PROCESS

Data, ML models and the ML development process are most

important to be reviewed and therefore investigated in detail.

A. Data and ML-Model Inspection With Metrics

Fig. 3 shows a selection of metrics for regression and

classifier quality assessment metrics. This choice of metric has

an impact on the test result, since the different metrics focus

on different quality criteria. For example, both the MSE and

MMRE metrics calculate the deviation from the prediction to

the ground truth, but use different formulas. MSE calculates

the mean squared error, while MMRE calculates the mean

Fig. 3 Selection of Quality Metrics

relative error with respect to the correct value. There are also

compound metrics that try to combine several basic metrics. It

is possible that predictive models perform well with one metric

but worse with another [21]. Which metric is most appropriate

can only be determined in relation to the specific application.

B. ML Development Process Inspection

ML-engineering and -development is today carried out and

used in almost every organization to a different extent -

quite analogous to the general software development over the

years. However, ML software has unique features that clearly

distinguish it from traditional enterprise software development.

The ML development process to be investigated can be

described as shown in Fig. 4, the ML development process

under investigation can be divided into 3 tasks: the validation

of data, the validation of ML models, and the validation of

the ML application itself.

Fig. 4 Assessment Overview

The details to be considered are:

• Continuous Data Quality Check: The models are based

on historical data, while the data itself is constantly

changing. Data quality is often taken for granted without

having been properly tested and validated, and its quality

must be continuously reviewed. Therefore, data quality

must be continuously checked, data must be versioned,

continuously collected to represent the ground truth and
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correspond as closely as possible to the real world, and

data quality must be continuously monitored.

• Continuous Model Quality Check: ML models must be

subject to continuous quality checks. Versioning, model

provisioning and quality monitoring of the processes must

also be ensured. And regular model updates through

training and ensuring the same quality are important.

• ML DevOps - Continuous Delivery: The quality of

traditional software development must be ensured. In

addition, however, the integration effort of ML models

into the product must also be regulated. How quickly

changes to the ML models developed by data scientists

can be integrated into the product lifecycle is crucial for

the timeliness of an ML application. ML-DevOps must

therefore be supported.

Therefore a special ML software development lifecycle

(ML-SDLC) with its quality indicators should be reviewed by

the auditors.

V. MACHINE LEARNING AUDIT FRAMEWORK

First the specification of audits is discussed, followed by the

ML audit framework, its workflow description, and possible

implementation.

A. Machine Learning Audit Specification

To the best of our knowledge, there are currently no

machine-readable specification languages for machine learning

(see [22]). For continuous auditing and automation an

xml-based audit language for ML is required. An overview

and comparison of audit specification languages in general

and specifically for cloud computing was presented by

Doelitzscher et al. [23]. Based on the overview in relation

to the domain of machine learning, there are the data and

ML models that need to be quality checked by a number of

metrics, such as accuracy, completeness, timeliness, etc. The

ML development process is a manual task by the internal or

external auditor.

B. Machine Learning Audit Framework Architecture

The framework architecture consists of four modules, which

in turn consist of several sub-modules. Fig. 5 visualizes

the degree of abstraction of the modules by the vertical

arrangement. The topmost module, Audit, has the highest

degree of abstraction. This is where the administrative and

organizational processes take place, such as the audit process,

the definition of the goals of an audit. The Inspection module

covers the targeted activities of an auditor to demonstrate

compliance with guidelines or specifications. Resources are

entities that are required to perform an audit. The Toolbox
module does not include entities, but rather the tools and

actions from which an audit can be assembled.

In summary, the Audit module specifies the audit objectives

according to the assessment requirements of the objective, the

ML application. The more detailed circumstances of the audit

that affect the modules Audit and Resources are defined and

provide evidence to the auditor. The specifications determine

Audit

Inspection

Toolbox Resources

Define

Define

Utilizes Utilizes

Provides Evidence

Fig. 5 Audit Framework Architecture Overview

the available resources and the necessary activities during the

tests, so that the tools from the toolbox can be used to generate

evidence.

C. ML Audit Workflow

The workflow shown in Fig. 6 begins with specification, in

which the audit objectives, environment and constraints are

defined, and the workflow is described as follows:

Fig. 6 Audit Workflow

1) Criteria: Defines the criteria of the data and model

to be evaluated in the audit workflow. The criteria are

evaluated to ensure adequacy, Inaccuracies are clarified.

2) Resources: Orchestrates the resources required to

perform the audit tasks, taking into account the defined

specifications. Examples of resources are the ML model

and the data set.

3) Examination: If the specifications imply resource

requirements, the audit task analyzes the specifications,

criteria, and resources to ensure the validity of the

audit results. This task is essential because faulty

specifications, criteria, or resources would nullify and

invalidate the audit results. The audit task also analyzes

the structure of the model and resources in order to gain
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insights that are necessary to determine the procedure

defined in the next task. If the examination determines

that the resources are insufficient to determine the audit

procedure, the resource task is repeated, taking into

account the results of the examination.

4) Procedure: Defines the procedure of the audit itself

using the toolbox to provide the elements necessary

to create the audit procedure. The structure of the

procedure depends on the defined criteria.

5) Planing: Creates the order in which the audit is to

be carried out, taking into account dependencies and

resource coordination. A well defined plan ensures a

smooth and efficient process. If no plan can be created

due to conditions that cannot be met, the procedure must

be changed.

6) Preparation: Consists of a preparatory action step for

the final results and evidence. Examples would be the

change of resources for the verification, the correction

of defects. Depending on the test to be performed,

preparation may not be necessary.

7) Review: At this point of the audit workflow all elements

of the audit are defined. The results of the previous task

are combined to create an executable audit.

8) Validation: The created executable audit is validated to

ensure its validity, since errors in the audit would falsify

the audit results. Defects discovered are corrected at

their point of origin (criteria, resources or procedures).

9) Execution: The validated executable check is processed

and the result is the result of the check. In case of

non-compliance with a audit objective, there are several

possible procedures: a) in case of a negative verdict for

the model, the test could be aborted, b) jump directly to

the report, or c) continue the audit as planned. In case

of a positive verdict, the next task is continued.

10) Proof: The audit results are recorded and compared with

the requirements, and detailed evidence is generated.

11) Monitoring: All generated evidence is collected,

summarized and made available as a report. The

granularity of the evidence report depends on the level

of detail required.

D. Framework Automation and Implementation

The audit framework for ML models can automate many

audit steps described in the audit workflow to minimize the

audit effort and possible human error in the audit process. In

this work, executable audits were created manually in Python,

but evidence was generated, the audit and the audit report were

processed automatically.

The framework uses the well known and proven machine

learning frameworks keras [24] and tensorflow [25] to create

its extensive functionality for the audit process.

The implementation of the audit framework (modules,

structure and processes) was inspired by various existing

audit frameworks. The framework developed by Holland et

al. [26] to assign appropriate functions for providing data and

generating results for each data set label has been adopted for

use with the prediction model. The concept of augmenting

datasets with coverage-guided fuzzing by Xie et al. [27]

has been adopted for transforming a data set to generate an

additional data set for test purposes. Burton et al. [28] argued

that a predictive model fulfills a certain requirement if it

provides a certain performance in an environment specified for

a benchmark. The concept known as the security case pattern

has been adapted for use in the audit framework. The audit

framework was also developed by the architecture of Nishi

et al. [3], which describes potential structures, tests and test

types that can be tested within a machine learning product.

VI. EVALUATION

For the evaluation of the functionality of the described audit

ML framework the data set ”Steel Plates Faults”, which is

part of the machine learning repository of the University of

California, Irvine [29] was used. This data set contains 27

independent variables describing 7 types of steel plate failures.

In our application example, we create a machine learning

model to determine steel plate failure classes based on different

steel plate properties. The audit objective of this use case is to

determine the accuracy, robustness, and spurious relationship

of our machine learning model and the occurrence of each

defect class in the test data set. We define a set of rules for

each metric to prove the conformity or violation of the model

during the audit process.

Rule 1 Fault class proportion in test dataset

1: for each Class in fault classes do
2: if Class proportion in dataset ≤ 10% then
3: return False

4: end if
5: end for
6: return True

Rule 1 defines that the test data set meets our requirements

if each failure class has a share of more than 10% in the

data set. Execution of the audit task shows that our machine

learning model violates rule 1, as shown in Fig. 7.

To obtain meaningful and correct evidence in subsequent

audit steps, the proportion of defect classes in the test data set

is rebalanced by removing disproportionate test data from the

data set.

Rule 2 Model accuracy

if Accuracy ≥ 72% then
2: return True

else
4: return False

end if

Rule 2 defines that the model meets our requirements if the

accuracy is greater than or equal to 72%.

In the next step, the prediction of our model is compared

to the prediction with the ground truth, and the results

are quantified by the above mentioned metrics accuracy,
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TABLE I 
AUDIT RESULTS OF THE STEEL PLATES FAULT CLASSIFICATION

Inspection Criteria Metric Value required Value demonstrated Assessment

Accuracy C1 Accuracy 0.72 0.7201 Compliant
Accuracy C1 F1-Score 0.7 0.732 Compliant
Robustness R1 F1-Score 0.67 0.711 Compliant
Stability R2 Neuron Coverage 0.85 0.85 Compliant
Stability R3 Top-2 NC 0.7 0.625 Not compliant
Spurious relationship S1 Plausibility rate 0.8 1 Compliant
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Fig. 7 Proportion of Fault Classes in the Test Data Set

robustness and spurious relationship. Auditing the robustness

of the model requires creating an additional data set by

transforming each record in the test dataset by replacing a

random feature value with the average value for the feature

over all records. Auditing the robustness also encompasses

evaluate the relevance of the neurons within the model by

determining the structural coverage metrics In the last step of

the audit, the inference of the model is evaluated to determine

whether a false relationship exists. The procedure consists of

creating a local and linear approximation of the real inference.

The final step is the audit report, which consists of a

summary of the audit task performed, as shown in Fig. 8,

and the results for the audit itself for each criterion, as shown

in Table I.

Fig. 8 Audit Report Showing the Audit Workflow

VII. CONCLUSION

An ML test frame with a corresponding workflow was

designed and described. The framework facilitates the

execution of audits for ML data, ML models and the ML

development process. It defines the relevant elements, puts

them into context and regulates the audit process. Due to the

heterogeneity of ML models, the audit framework is abstract

and not limited to specific model architectures or platforms.

The applicability of this audit concept was evaluated on the

basis of the use case: steel sheet defects.
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