Salinity Reduction from Saharan Brackish Water by Fluoride Removal on Activated Natural Materials: A Comparative Study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Salinity Reduction from Saharan Brackish Water by Fluoride Removal on Activated Natural Materials: A Comparative Study

Authors: Amina Ramadni, Safia Taleb, André Dératani

Abstract:

The present study presents, firstly, to characterize the physicochemical quality of brackish groundwater of the Terminal Complex (TC) from the region of Eloued-souf and to investigate the presence of fluoride, and secondly, to study the comparison of adsorbing power of three materials, such as (activated alumina AA, sodium clay SC and hydroxyapatite HAP) against the groundwater in the region of Eloued-souf. To do this, a sampling campaign over 16 wells and consumer taps was undertaken. The results show that the groundwater can be characterized by very high fluoride content and excessive mineralization that require in some cases, specific treatment before supply. The study of adsorption revealed removal efficiencies fluoride by three adsorbents, maximum adsorption is achieved after 45 minutes at 90%, 83.4% and 73.95%, and with an adsorbed fluoride content of 0.22 mg/L, 0.318 mg/L and 0.52 mg/L for AA, HAP and SC, respectively. The acidity of the medium significantly affects the removal fluoride. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. The adsorption tests by adsorbent materials show that the physicochemical characteristics of brackish water are changed after treatment. The adsorption mechanism is an exchange between the OH- ions and fluoride ions. Three materials are proving to be effective adsorbents for fluoride removal that could be developed into a viable technology to help reduce the salinity of the Saharan hyper-fluorinated waters. Finally, a comparison between the results obtained from the different adsorbents allowed us to conclude that the defluoridation by AA is the process of choice for many waters of the region of Eloued-souf, because it was shown to be a very interesting and promising technique.

Keywords: Fluoride removal, groundwater, hydrochemical characterization, natural materials.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1126816

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056

References:


[1] N. Bouchahm, Samia Achour, “Qualité des Eaux Souterraines des Aquifères de la Région Orientale du Sahara Septentrional Algérien, Journal Algérien des Régions Arides”, vol. 04, pp. 19 -27, 2005.
[2] N. Sedrati, “Origine et caractéristiques physico-chimiqurs des eaux de la wilaya de Biskra Sud-Est Algerian”, thése de doctorat, Option Hydrogéologie, Badji Mokhtar-Annaba University, 2011.
[3] S. Achour, “La qualité des eaux du Sahara septentrional en Algérie : étude de l’excès en fluor”. Tribune de l’Eau, vol 42, 542, pp.53-57, 1999.
[4] A. Ramdani; S. Taleb; A. Benghalem, N. Ghaffour. “Removal of excess fluoride ions from Saharan brackish water by adsorption on natural materials”, Desalination, vol 250, pp. 408-413, 2010.
[5] H. M. Djellouli; S. Taleb; D. Harrache-Chettouh; S. Djaroud. Qualité physico - chimique des eaux de boisson du Sud algérien: étude de l'excès en sels minéraux”. Journal du Cahiers d’études et de recherches francophones/ Santé, vol 2, pp. 109-112, 2010.
[6] A. Ramdani, H. M. Djellouli, N. Aït Yala, S. Taleb, A. Benghalem, B. Mahi, A. Khadraoui. "Physico-chemical water quality in some regions of southern Algeria and pretreatment prediction". Procedia Engineering. Procedia Engineering, vol 33, pp.335 – 339, 2012.
[7] I. Nezli, S. Achour, B. Hamdi-Aïssa, “Hydrogeochemical approach to study the water fluoridation of the Terminal Complex aquifer in the low algerianValley of M’ya (Ouargla), Courrier du Savoir, vol 09, pp. 57-62, 2009.
[8] L. Youssef, S. Achour, “Defluoruration des eaux souterraines du Sud Algerien par la chaux et le sulfate d’aluminium”, Courrier du Savoir, 01(2001) 65-71.
[9] R. Meenakshi, R.C. Maheshwari, “Fluoride in drinking water and its removal”, Journal of Hazardous Materials, vol B137, pp. 456–463, 2006.
[10] N. Mameri, A.R. Yeddou, H. Lounici, D. Belhocine, H. Grib, B. Bariou, “Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes”, Water Res. Vol 32, pp.1604–1612, 1998.
[11] G.M. Witford, “Determinants and mechanisms of enamel fluorosis”, Ciba Found Symp, vol 205, pp. 226-241, 1997.
[12] A, Guendouz; A. S. Moulla, W.M. Edmunds; K. Zouari, K; P. Shands; A. Mamou. “Hydrogeochemical and isotopic evolution of water in the complex terminal aquifer in Algerian Sahara”. Hydogeology Journal, vol 11, pp. 483-495, 2003.
[13] M. Mohapatra, K. Rout, P. Singh, S. Anand, S. Layek, H.C. Verma, B.K. Mishra, “Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique”. Journal of Hazardous Materials, vol 186, pp. 1751–1757, 2011.
[14] M.A. Menkouchi Sahli, S. Annouar, M. Tahaikt, M. Mountadar, A. Soufiane, A. Elmidaoui, “Fluoride removal for underground brackish water by adsorption on the natural chitosan and by electrodialysis”, Desalination, vol 212, pp. 37– 45, 2007.
[15] A. Tor, “Removal of fluoride from water using anion-exchange membrane under Donnan dialysis condition”, Journal of Hazardous Materials, vol 14, pp. 814-818, 2007.
[16] C. Castel, M. Schweizer, M.O. Simonnot and M. Sardin, “Selective removal of fluoride ions by a two-way ion-exchange cyclic process”, Chem. Eng. Sci., vol 55, pp. 3341, 2000.
[17] M. Hichour, F. Persin, J. Mol6nat, J. Sandeaux, C. Gavach, “Fluoride removal from diluted solutions by Donnan dialysis with anion-exchange membranes”, Desalination, vol 122 pp.53-62, 1999.
[18] A. Ramdani; S. Taleb; A. Benghalem; N. Ghaffour. “Removal of excess fluoride ions from Saharan brackish water by adsorption on natural materials”, Desalination, vol 250, pp. 408-413, 2010.
[19] Y. Ma; F. Shi; X. Zheng, J. Ma, C. Gao. “Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB): Batch and column studies”, Journal of Hazardous Materials, vol 185, pp.1073–1080, 2011.
[20] W. Takaaki ; U. Yuta; N. Shuji; S. Katsuyasu, “ Adsorption behavior of fluoride ions using a titanium hydroxide-derived adsorbent”, Desalination, vol 249; pp. 323–330, 2009.
[21] M. Mourabet ; A. El Rhilassi; H. El Boujaady; M. Bennani-Ziatni; R. El Hamri; A. Taitai. “Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box–Behnken design and desirability function”, Applied Surface Science, vol. 258, pp. 4402–4410, 2012.
[22] M. Tahaikt; R. El Habbani; A. Ait Haddou; I. Achary; Z. Amor; M. Taky; A. Alami; A. Boughriba; M. Hafsi; A. Elmidaoui. “Fluoride removal from groundwater by nanofiltration”, Desalination, vol. 212 , pp. 46–53, 2007.
[23] K. Hu, J. M. Dickson, “Nanofiltration membrane performance on fluoride removal from water” Journal of Membrane Science, vol 279, pp. 529–538, 2006.
[24] M. Tahaikt, A. Ait Haddou, R. El Habbani, Z. Amor, F. Elhannouni, M. Taky, M. Kharif, A. Boughriba, M. Hafsi, A. Elmidaoui, “Comparison of the performances of three commercial membranes in fluoride removal by nanofiltration. Continuous operations”, Desalination, vol 225, pp. 209–219, 2008.
[25] A. H. Bannoud; Y. Darwich. “Elimination des ions fluorures et manganèses contenus dans les eaux par nanofiltration”, Desalination, vol 206 , pp. 449–456, 2007.
[26] B. Van der Bruggen, M. Manttari, M. Nystrom, “Drawbacks of applying nanofiltration and how to avoid them: A review”, Separation and Purification Technology, vol 63, pp. 251–263, 2008.
[27] D. Dolar, K. Košutić, B. Vučić, “RO/NF treatment of wastewater from fertilizer factory — removal of fluoride and phosphate”, Desalination, vol 265, pp. 237–241, 2011.
[28] UNESCO. Projet ERESS. “Etude des ressources en eau du Sahara septentrional. Rapport sur les résultats du projet”, Paris (1972). 100 p.
[29] A. Cornet. “Introduction à l’hydrogéologie saharienne. Géographie Physique et Géologie Dynamique” Vol.VI. fascl, pp. 5-72,1992.
[30] B. Bouselsal; N. Kherici. “Effets de la remontée des eaux de la nappe phréatique sur l’homme et l’environnement : cas de la région d’El-Oued (SE Algérie)”, Afrique SCIENCE 10(3), pp.161 – 170, 2014.
[31] F. Bel; D. Cuche. “Etude des nappes du Complexe Terminal du bas Sahara. Données géologiques et hydrogéologiques pour la construction du modèle mathématique. DHW, Ouargla, 1970.
[32] J. Rodier, “The analysis of water: natural water, waste water, sea water: physical chemistry, bacteriology and biology." Ed Dunod, Paris, France, 8 pp-1383, (1996).
[33] A. Ramdani, S. Taleb, A. Benghalem, Study of the optimization of the potential of adsorption of the local montmorillonite for the reduction of the excess of ions Fluorides of Saharan water”, Phys. Chem. News, vol 52, pp. 89–97, 2010.
[34] A. Tor, “Removal of fluoride from an aqueous solution by using montmorillonite”, Desalination, vol 201, pp. 267–276, 2006.
[35] G. Karthikeyan, A. Shunmuga Sundarraj, S. Meenakshi, K.P. Elango, “Adsorption dynamics and the effect of temperature of fluoride at alumina solution interface”, J. Indian. Chem. Soc., vol 81, pp.461–466, 2004.
[36] Y. Ku; H.M. Chiou. “The adsorption of fluoride ion from aqueous solution by activated alumina”. Water Air Soil Pollut. Vol 133 (1), pp. 349–361, 2002
[37] W. Wei; X. Wang; Y. Wang; M. Xu; J. Cui; Z. Wei. “Evaluation of removal efficiency of fluoride from aqueous solution using nanosized fluorapatite”, Desal. Wat. Treat. Vol 52 (31-33), pp. 6219-6229, 2014.
[38] L. El Hammari; A. Laghzizil; P. Barboux; K. Lahlil; A. Saoiabi. Crystallinity and fluorine substitution effects on the proton conductivity of porous hydroxyapatites, J. Solid State Chem. 177, pp.134-138, 2004.
[39] R. Sennour; G. Mimane; A. Benghalem; S. Taleb. “Removal of the persistent pollutant chlorobenzene by adsorption onto activated montmorillonite”, Applied Clay Science, vol 43, pp.5003 – 506, 2009.
[40] M.G. Sujana, S. Anand, “Iron and aluminium based mixed hydroxides: A novel sorbent for fluoride removal from aqueous solutions, Appl. Surf. Sci., vol 256, pp.6956–6962, 2010.