Search results for: High density polyethylene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6535

Search results for: High density polyethylene

4915 Feasibility of a Biopolymer as Lightweight Aggregate in Perlite Concrete

Authors: Ali A. Sayadi, Thomas R. Neitzert, G. Charles Clifton

Abstract:

Lightweight concrete is being used in the construction industry as a building material in its own right. Ultra-lightweight concrete can be applied as a filler and support material for the manufacturing of composite building materials. This paper is about the development of a stable and reproducible ultra-lightweight concrete with the inclusion of poly-lactic acid (PLA) beads and assessing the feasibility of PLA as a lightweight aggregate that will deliver advantages such as a more eco-friendly concrete and a non-petroleum polymer aggregate. In total, sixty-three samples were prepared and the effectiveness of mineral admixture, curing conditions, water-cement ratio, PLA ratio, EPS ratio and perlite ratio on compressive strength of perlite concrete are studied. The results show that PLA particles are sensitive to alkali environment of cement paste and considerably shrank and lost their strength. A higher compressive strength and a lower density was observed when expanded polystyrene (EPS) particles replaced PLA beads. In addition, a set of equations is proposed to estimate the water-cement ratio, cement content and compressive strength of perlite concrete.

Keywords: Perlite concrete, poly-lactic acid, expanded polystyrene, concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
4914 Reduction of Impulsive Noise in OFDM System Using Adaptive Algorithm

Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh

Abstract:

The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.

Keywords: OFDM, Impulsive Noise, SSRLS, BER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
4913 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements

Authors: Alexander Buhr, Klaus Ehrenfried

Abstract:

Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.

Keywords: Boundary layer, high-speed PIV, ICE3, moving train model, roughness elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
4912 Synthesis of Copper Sulfide Nanoparticles by Pulsed Plasma in Liquid Method

Authors: Zhypargul Abdullaeva, Emil Omurzak, Tsutomu Mashimo

Abstract:

Copper sulfide nanoparticles (CuS) were successfully synthesized by the pulsed plasma in liquid method, using two copper rod electrodes submerged in molten sulfur. Low electrical energy and no high temperature were applied for synthesis. Obtained CuS nanoparticles were then analyzed by means of X-ray diffraction, Low and High Resolution Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron, Raman Spectroscopies and Field Emission Scanning Electron Microscopy. XRD analysis revealed peaks for CuS with hexagonal phase composition. TEM and HRTEM studies showed that sizes of CuS nanoparticles ranged between 10-60 nm, with the average size of about 20 nm. Copper sulfide nanoparticles have short nanorod-like structure. Raman spectroscopy found peak for CuS at 474.2cm-1of Raman region.

Keywords: Copper sulfide, Nanoparticles, Pulsed plasma, Synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4394
4911 Numerical Analysis of Oil-Water Transport in Horizontal Pipes Using 1D Transient Mathematical Model of Thermal Two-Phase Flows

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of thermal oil-water two-phase emulsion flows in pipes. The set of the mass, momentum and enthalpy conservation equations for the continuous fluid and droplet phases are solved. Two friction correlations for the continuous fluid phase to wall friction are accounted for in the model and tested. The aerodynamic drag force between the continuous fluid phase and droplets is modeled, too. The density and viscosity of both phases are assumed to be constant due to adiabatic experimental conditions. The proposed mathematical model is validated on the experimental measurements of oil-water emulsion flows in horizontal pipe [1,2]. Numerical analysis on single- and two-phase oil-water flows in a pipe is presented in the paper. The continuous oil flow having water droplets is simulated. Predictions, which are performed by using the presented model, show excellent agreement with the experimental data if the water fraction is equal or less than 10%. Disagreement between simulations and measurements is increased if the water fraction is larger than 10%.

Keywords: Mathematical model, Oil-Water, Pipe flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
4910 Microstructural and In-Vitro Characterization of Glass-Reinforced Hydroxyapatite Composites

Authors: Uma Batra, Seema Kapoor

Abstract:

Commercial hydroxyapatite (HA) was reinforced by adding 2, 5, and 10 wt % of 28.5%CaO-28.5%P2O5-38%Na2 O- 5%CaF2 based glass and then sintered. Although HA shows good biocompatibility with the human body, its applications are limited to non load-bearing areas and coatings due to its poor mechanical properties. These mechanical properties can be improved substantially with addition of glass ceramics by sintering. In this study, the effects of sintering hydroxyapatite with above specified phosphate glass additions are quantified. Each composition was sintered over a range of temperatures. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phases of the composites. The density, microhardness, and compressive strength were measured using Archimedes Principle, Vickers Microhardness Tester (at 0.98 N), and Instron Universal Testing Machine (cross speed of 0.5 mm/min) respectively. These results were used to indicate which composition provided suitable material for use in hard tissue replacement. Composites containing 10 wt % glass additions formed dense HA/TCP (tricalcium phosphate) composite materials possessing good compressive strength and hardness than HA. In-vitro bioactivity was assessed by evaluating changes in pH and Ca2+ ion concentration of SBF-simulated body fluid on immersion of these composites in it for two weeks.

Keywords: Bioglass, Composite, Hydroxyapatite, Sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
4909 Image Compression Using Hybrid Vector Quantization

Authors: S.Esakkirajan, T. Veerakumar, V. Senthil Murugan, P.Navaneethan

Abstract:

In this paper, image compression using hybrid vector quantization scheme such as Multistage Vector Quantization (MSVQ) and Pyramid Vector Quantization (PVQ) are introduced. A combined MSVQ and PVQ are utilized to take advantages provided by both of them. In the wavelet decomposition of the image, most of the information often resides in the lowest frequency subband. MSVQ is applied to significant low frequency coefficients. PVQ is utilized to quantize the coefficients of other high frequency subbands. The wavelet coefficients are derived using lifting scheme. The main aim of the proposed scheme is to achieve high compression ratio without much compromise in the image quality. The results are compared with the existing image compression scheme using MSVQ.

Keywords: Lifting Scheme, Multistage Vector Quantization and Pyramid Vector Quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
4908 A Proposed Hybrid Color Image Compression Based on Fractal Coding with Quadtree and Discrete Cosine Transform

Authors: Shimal Das, Dibyendu Ghoshal

Abstract:

Fractal based digital image compression is a specific technique in the field of color image. The method is best suited for irregular shape of image like snow bobs, clouds, flame of fire; tree leaves images, depending on the fact that parts of an image often resemble with other parts of the same image. This technique has drawn much attention in recent years because of very high compression ratio that can be achieved. Hybrid scheme incorporating fractal compression and speedup techniques have achieved high compression ratio compared to pure fractal compression. Fractal image compression is a lossy compression method in which selfsimilarity nature of an image is used. This technique provides high compression ratio, less encoding time and fart decoding process. In this paper, fractal compression with quad tree and DCT is proposed to compress the color image. The proposed hybrid schemes require four phases to compress the color image. First: the image is segmented and Discrete Cosine Transform is applied to each block of the segmented image. Second: the block values are scanned in a zigzag manner to prevent zero co-efficient. Third: the resulting image is partitioned as fractals by quadtree approach. Fourth: the image is compressed using Run length encoding technique.

Keywords: Fractal coding, Discrete Cosine Transform, Iterated Function System (IFS), Affine Transformation, Run length encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
4907 Seamless Flow of Voluminous Data in High Speed Network without Congestion Using Feedback Mechanism

Authors: T.Sheela, Dr.J.Raja

Abstract:

Continuously growing needs for Internet applications that transmit massive amount of data have led to the emergence of high speed network. Data transfer must take place without any congestion and hence feedback parameters must be transferred from the receiver end to the sender end so as to restrict the sending rate in order to avoid congestion. Even though TCP tries to avoid congestion by restricting the sending rate and window size, it never announces the sender about the capacity of the data to be sent and also it reduces the window size by half at the time of congestion therefore resulting in the decrease of throughput, low utilization of the bandwidth and maximum delay. In this paper, XCP protocol is used and feedback parameters are calculated based on arrival rate, service rate, traffic rate and queue size and hence the receiver informs the sender about the throughput, capacity of the data to be sent and window size adjustment, resulting in no drastic decrease in window size, better increase in sending rate because of which there is a continuous flow of data without congestion. Therefore as a result of this, there is a maximum increase in throughput, high utilization of the bandwidth and minimum delay. The result of the proposed work is presented as a graph based on throughput, delay and window size. Thus in this paper, XCP protocol is well illustrated and the various parameters are thoroughly analyzed and adequately presented.

Keywords: Bandwidth-Delay Product, Congestion Control, Congestion Window, TCP/IP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
4906 Hydrogen Rich Fuel Gas Production from 2- Propanol Using Pt/Al2O3 and Ni/Al2O3 Catalysts in Supercritical Water

Authors: Yağmur Karakuş, Fatih Aynacı, Ekin Kıpçak, Mesut Akgün

Abstract:

Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Pt/Al2O3and Ni/Al2O3were the catalysts used in the gasification reactions. All of the experiments were performed under a constant pressure of 25MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.

Keywords: 2-Propanol, Gasification, Ni/Al2O3, Pt/Al2O3, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
4905 Design Calculation and Performance Testing of Heating Coil in Induction Surface Hardening Machine

Authors: Soe Sandar Aung, Han Phyo Wai, Nyein Nyein Soe

Abstract:

The induction hardening machines are utilized in the industries which modify machine parts and tools needed to achieve high ware resistance. This paper describes the model of induction heating process design of inverter circuit and the results of induction surface hardening of heating coil. In the design of heating coil, the shape and the turn numbers of the coil are very important design factors because they decide the overall operating performance of induction heater including resonant frequency, Q factor, efficiency and power factor. The performance will be tested by experiments in some cases high frequency induction hardening machine.

Keywords: Induction Heating, Resonant Circuit, InverterCircuit, Coil Design, Induction Hardening Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22282
4904 Speciation of Iron (III) Oxide Nanoparticles and Other Paramagnetic Intermediates during High-Temperature Oxidative Pyrolysis of 1-Methylnaphthalene

Authors: Michael P. Herring, Lavrent Khachatryan, Barry Dellinger

Abstract:

Low Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1--MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron (III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)2O3 nanoparticles clusters, characterized by gfactors of 2.00, 2.28, 3.76 and 4.37 were detected on a cold finger maintained at 77 K after accumulation over a multitude of experiments. Additionally, a high valence Fe (IV) paramagnetic intermediate and superoxide anion-radicals, O2•- adsorbed on nanoparticle surfaces in the form of Fe (IV) --- O2•- were detected from the quenching area of Zone 1 in the gas-phase.

Keywords: Cryogenic trapping, EPFRs, dendrimer, Fe2O3 doped silica, soot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
4903 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics

Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen

Abstract:

Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400 ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.

Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
4902 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns

Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally

Abstract:

This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.

Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
4901 Modelling, Simulation and Validation of Plastic Zone Size during Deformation of Mild Steel

Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, O. O. Taiwo

Abstract:

A model to predict the plastic zone size for material under plane stress condition has been developed and verified experimentally. The developed model is a function of crack size, crack angle and material property (dislocation density). Simulation and validation results show that the model developed show good agreement with experimental results. Samples of low carbon steel (0.035%C) with included surface crack angles of 45o, 50o, 60o, 70o and 90o and crack depths of 2mm and 4mm were subjected to low strain rate between 0.48 x 10-3 s-1 – 2.38 x 10-3 s-1. The mechanical properties studied were ductility, tensile strength, modulus of elasticity, yield strength, yield strain, stress at fracture and fracture toughness. The experimental study shows that strain rate has no appreciable effect on the size of plastic zone while crack depth and crack angle plays an imperative role in determining the size of the plastic zone of mild steel materials.

Keywords: Applied stress, crack angle, crack size, material property, plastic zone size, strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
4900 Impairments Correction of Six-Port Based Millimeter-Wave Radar

Authors: Dan Ohev Zion, Alon Cohen

Abstract:

In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.

Keywords: Radar, millimeter-wave, six-port, FMCW Radar, IQ mismatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484
4899 Occurrence of High Nocturnal Surface Ozone at a Tropical Urban Area

Authors: S. Dey, P. Sibanda, S. Gupta, A. Chakraborty

Abstract:

The occurrence of high nocturnal surface ozone over a tropical urban area (23̊ 32′16.99″ N and 87̊ 17′ 38.95″ E) is analyzed in this paper. Five incidences of nocturnal ozone maxima are recorded during the observational span of two years (June, 2013 to May, 2015). The maximum and minimum values of the surface ozone during these five occasions are 337.630 μg/m3 and 13.034 μg/m3 respectively. HYSPLIT backward trajectory analyses and wind rose diagrams support the horizontal transport of ozone from distant polluted places. Planetary boundary layer characteristics, concentration of precursor (NO2) and meteorology are found to play important role in the horizontal and vertical transport of surface ozone during nighttime.

Keywords: Nocturnal ozone, planetary boundary layer, horizontal transport, meteorology, urban area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
4898 Watermark Bit Rate in Diverse Signal Domains

Authors: Nedeljko Cvejic, Tapio Sepp

Abstract:

A study of the obtainable watermark data rate for information hiding algorithms is presented in this paper. As the perceptual entropy for wideband monophonic audio signals is in the range of four to five bits per sample, a significant amount of additional information can be inserted into signal without causing any perceptual distortion. Experimental results showed that transform domain watermark embedding outperforms considerably watermark embedding in time domain and that signal decompositions with a high gain of transform coding, like the wavelet transform, are the most suitable for high data rate information hiding. Keywords?Digital watermarking, information hiding, audio watermarking, watermark data rate.

Keywords: Digital watermarking, information hiding, audio watermarking, watermark data rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
4897 A Review on Bearing Capacity Factor Nγ of Shallow Foundations with Different Shapes

Authors: S. Taghvamanesh, R. Ziaie Moayed

Abstract:

There are several methods for calculating the bearing capacity factors of foundations and retaining walls. In this paper, the bearing capacity factor Nγ (shape factor) for different types of foundation have been investigated. The formula for bearing capacity on c–φ–γ soil can still be expressed by Terzaghi’s equation except that the bearing capacity factor Nγ depends on the surcharge ratio, and friction angle φ. It is apparent that the value of Nγ increases irregularly with the friction angle of the subsoil, which leads to an excessive increment in Nγ of foundations with larger width. Also, the bearing capacity factor Nγ will significantly decrease with an increase in foundation`s width. It also should be highlighted that the effect of shape and dimension will be less noticeable with a decrease in the relative density of the soil. Hence, the bearing capacity factor Nγ relatively depends on foundation`s width, surcharge and roughness ratio. This paper presents the results of various studies conducted on the bearing capacity factor Nγ of: different types of shallow foundation and foundations with irregular geometry (ring footing, triangular footing, shell foundations and etc.) Further studies on the effect of bearing capacity factor Nγ on mat foundations and the characteristics of this factor with or without consideration for the presence of friction between soil and foundation are recommended.

Keywords: Bearing capacity, Bearing capacity factor, irregular foundation, shallow foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
4896 Secured Mutual Authentication Protocol for Radio Frequency Identification Systems

Authors: C. Kalamani, S. Sowmiya, S. Dheivambigai, G. Harihara Sudhan

Abstract:

Radio Frequency Identification (RFID) is a blooming technology which uses radio frequency to track the objects. This technology transmits signals between tag and reader to fetch information from the tag with a unique serial identity. Generally, the drawbacks of RFID technology are high cost, high consumption of power and weak authentication systems between a reader and a tag. The proposed protocol utilizes less dynamic power using reversible truncated multipliers which are implemented in RFID tag-reader with mutual authentication protocol system to reduce both leakage and dynamic power consumption. The proposed system was simulated using Xilinx and Cadence tools.

Keywords: Mutual authentication, protocol, reversible gates, RFID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 678
4895 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization

Authors: Subrato Saha, Yun-Hyun Cho

Abstract:

This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.

Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
4894 Influence of Milled Waste Glass to Clay Ceramic Foam Properties Made by Direct Foaming Route

Authors: A. Shishkin, V. Mironovs, D. Goljandin, A. Korjakins

Abstract:

The goal of this work is to develop sustainable and durable ceramic cellular structures using widely available natural resources- clay and milled waste glass. Present paper describes method of obtaining clay ceramic foam (CCF) with addition of milled waste glass in 5, 7 and 10 wt% by direct foaming with high speed mixer-disperser (HSMD). For more efficient clay and waste glass milling and mixing, the high velocity disintegrator was used. The CCF with 5, 7, and 10 wt% were obtained at 900, 950, 1000 and 1050 °C firing temperature and they have demonstrated mechanical compressive strength for all 12 samples ranging from 3.8 to 14.3 MPa and porosity 76-65%. Obtained CCF has compressive strength 14.3 MPa and porosity 65.3%.

Keywords: Ceramic foam, waste glass, clay foam, glass foam, open cell, direct foaming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
4893 DC Link Floating for Grid Connected PV Converters

Authors: Attila Balogh, Eszter Varga, István Varjasi

Abstract:

Nowadays there are several grid connected converter in the grid system. These grid connected converters are generally the converters of renewable energy sources, industrial four quadrant drives and other converters with DC link. These converters are connected to the grid through a three phase bridge. The standards prescribe the maximal harmonic emission which could be easily limited with high switching frequency. The increased switching losses can be reduced to the half with the utilization of the wellknown Flat-top modulation. The suggested control method is the expansion of the Flat-top modulation with which the losses could be also reduced to the half compared to the Flat-top modulation. Comparing to traditional control these requirements can be simultaneously satisfied much better with the DLF (DC Link Floating) method.

Keywords: DC link floating, high efficiency, PV converter, control method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
4892 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel

Authors: Richard E. Miller

Abstract:

12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.

Keywords: Dissimilar materials, friction stir, welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
4891 Analysis of Thermal Deformation of a Rough Slider and Its Asperities and Its Impact on Load Generation in Parallel Sliders

Authors: Prawal Sinha, Getachew Adamu

Abstract:

Heating is inevitable in any bearing operation. This leads to not only the thinning of the lubricant but also could lead to a thermal deformation of the bearing. The present work is an attempt to analyze the influence of thermal deformation on the thermohydrodynamic lubrication of infinitely long tilted pad slider rough bearings. As a consequence of heating the slider is deformed and is assumed to take a parabolic shape. Also the asperities expand leading to smaller effective film thickness. Two different types of surface roughness are considered: longitudinal roughness and transverse roughness. Christensen-s stochastic approach is used to derive the Reynolds-type equations. Density and viscosity are considered to be temperature dependent. The modified Reynolds equation, momentum equation, continuity equation and energy equation are decoupled and solved using finite difference method to yield various bearing characteristics. From the numerical simulations it is observed that the performance of the bearing is significantly affected by the thermal distortion of the slider and asperities and even the parallel sliders seem to carry some load.

Keywords: Thermal Deformation, Tilted pad slider bearing, longitudinal roughness, transverse roughness, load capacity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
4890 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model

Authors: Bassim Bachy, Joerg Franke

Abstract:

In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multifunctional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.

Keywords: Laser Structuring, Simulation, Finite element analysis, Thermal modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4343
4889 High Specific Speed in Circulating Water Pump Can Cause Cavitation, Noise and Vibration

Authors: Chandra Gupt Porwal

Abstract:

Excessive vibration means increased wear, increased repair efforts, bad product selection & quality and high energy consumption. This may be sometimes experienced by cavitation or suction/discharge recirculation which could occur only when net positive suction head available NPSHA drops below the net positive suction head required NPSHR. Cavitation can cause axial surging, if it is excessive, will damage mechanical seals, bearings, possibly other pump components frequently, and shorten the life of the impeller. Efforts have been made to explain Suction Energy (SE), Specific Speed (Ns), Suction Specific Speed (Nss), NPSHA, NPSHR & their significance, possible reasons of cavitation /internal recirculation, its diagnostics and remedial measures to arrest and prevent cavitation in this paper. A case study is presented by the author highlighting that the root cause of unwanted noise and vibration is due to cavitation, caused by high specific speeds or inadequate net- positive suction head available which results in damages to material surfaces of impeller & suction bells and degradation of machine performance, its capacity and efficiency too. Author strongly recommends revisiting the technical specifications of CW pumps to provide sufficient NPSH margin ratios >1.5, for future projects and Nss be limited to 8500 - 9000 for cavitation free operation.

Keywords: Best efficiency point (BEP), Net positive suction head NPSHA, NPSHR, Specific Speed NS, Suction Specific Speed Nss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5060
4888 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: Heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
4887 [Ti(OC4H9)4/2,5-Dimethoxytetrahydrofuran/ TEA/Ethylene Chlorobromide] as a Novel Homogeneous Catalyst System Effective for the Ethylene Dimerization Reaction

Authors: Seyed Hamed Mahdaviani, Davood Soudbar, Matin Parvari

Abstract:

In the present research, the titanium-catalyzed ethylene dimerization and more specifically, the concomitant byproducts and polymer formation have been studied in the presence of 2,5-dimethoxytetrahydrofuran as an electron donor compound in the combination with triethylaluminium (TEA) as activator. Then, we added ethylene chlorobromide as a new efficient promoter to the relevant catalyst system. Finally, the behavior of novel homogeneous [Titanium tetrabutoxide (Ti(OC4H9)4)/2,5-dimethoxytetrahydrofuran/ TEA/ethylene chlorobromide] was investigated in the various operating conditions for the optimum production of 1-butene. In the optimum conditions, a very high ethylene conversion (almost 90.77 %), a relative high selectivity to 1-butene (79.00 %), yield of reaction equal to 71.70 % and a significant productivity (turnover frequency equal to 1370 h-1) were achieved.

Keywords: Ethylene dimerization, 2, 5-dimethoxytetrahydrofuran, ethylene chlorobromide, polymeric compounds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
4886 Numerical Simulation of Multiple Arrays Arrangement of Micro Hydro Power Turbines

Authors: M. A. At-Tasneem, N. T. Rao, T. M. Y. S. Tuan Ya, M. S. Idris, M. Ammar

Abstract:

River flow over micro hydro power (MHP) turbines of multiple arrays arrangement is simulated with computational fluid dynamics (CFD) software to obtain the flow characteristics. In this paper, CFD software is used to simulate the water flow over MHP turbines as they are placed in a river. Multiple arrays arrangement of MHP turbines lead to generate large amount of power. In this study, a river model is created and simulated in CFD software to obtain the water flow characteristic. The process then continued by simulating different types of arrays arrangement in the river model. A MHP turbine model consists of a turbine outer body and static propeller blade in it. Five types of arrangements are used which are parallel, series, triangular, square and rhombus with different spacing sizes. The velocity profiles on each MHP turbines are identified at the mouth of each turbine bodies. This study is required to obtain the arrangement with increasing spacing sizes that can produce highest power density through the water flow variation.

Keywords: Micro hydro power, CFD, arrays arrangement, spacing sizes, velocity profile, power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108