
 

 

  
Abstract—Heating is inevitable in any bearing operation. This 

leads to not only the thinning of the lubricant but also could lead to a 

thermal deformation of the bearing. The present work is an attempt to 

analyze the influence of thermal deformation on the thermo-

hydrodynamic lubrication of infinitely long tilted pad slider rough 

bearings. As a consequence of heating the slider is deformed and is 

assumed to take a parabolic shape. Also the asperities expand leading 

to smaller effective film thickness. Two different types of surface 

roughness are considered: longitudinal roughness and transverse 

roughness. Christensen’s stochastic approach is used to derive the 

Reynolds-type equations. Density and viscosity are considered to be 

temperature dependent. The modified Reynolds equation, momentum 

equation, continuity equation and energy equation are decoupled and 

solved using finite difference method to yield various bearing 

characteristics. From the numerical simulations it is observed that the 

performance of the bearing is significantly affected by the thermal 

distortion of the slider and asperities and even the parallel sliders 

seem to carry some load. 

  

Keywords—Thermal Deformation, Tilted pad slider bearing, 

longitudinal roughness, transverse roughness, load capacity.  

I. INTRODUCTION 

EVERAL research works have been done to investigate 

the thermal effects and surface roughness effects on the 

performance of tilted pad slider bearings. Several researchers 

such as Fogg [1], Osterle et al [2], Lewicki [3], Cameron [4], 

Young [5], Lebeck [6], etc. have experimentally investigated 

the thermal influence on the load carrying capacity of parallel 

slider bearings. The results of all these researchers show the 

existence of a lifting force (load capacity) even when parallel 

bearings are in operation. However, the precise causes which 

are responsible for this phenomenon are not precisely 

understood. Zienkiewicz [7] considered the slider and pad at 

different temperatures and showed that for parallel slider 

bearing if the pad temperature is greater than the slider 

temperature then a suctional effect, which may lead to a 

drastic fall in load carrying capacity, is possible. Rodkiewicz 

and Sinha [8] provided an orderly analysis which elaborates 

on the mechanisms that may be responsible for the fluid 
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generated lifting force. It is indicated that the consideration of 

the fore region pressure together with the density variation 

may lead to a useful load support with a reduced friction, even 

for parallel sliding bearing. 

Thermohydrodynamic lubrication problems of slider 

bearings have been analyzed numerically by many researchers 

such as Ezzat and Rhode [9], Pinkus [10], Kumar et al. [11]. A 

detailed review can be found in a paper by Khonsari [12].  

Tzeng and Saibel [13] have introduced stochastic concepts 

to analyze a two dimensional inclined slider bearing with one 

dimensional roughness in the direction transverse to the 

sliding direction. Using the same approach Christensen and 

Tonder [14] and Christensen [15] analyzed two types of one 

dimensional roughness: longitudinal roughness and transverse 

roughness models of hydrodynamic lubrication of tilted pad 

slider bearings. They developed a modified Reynolds equation 

applicable to each of these models and used to analyze the 

behavior of a fixed pad slider bearing. Christensen et al. [16] 

derived a general form of Reynolds equation using the same 

approach. 

In recent years researchers have focused attention on 

thermohydrodynamic analysis of rough surfaces. A theoretical 

study of a submerged oil journal bearing was made by Ramesh 

et al. [17] considering surface roughness and thermal effects. 

Chang and Farnum [18] developed a thermal model that can 

be used to analyze the transient elastohydrodynamic 

lubrication of rough surfaces. Huynh and Loe [19] studied the 

effects of location and shape of a localized corrugation on the 

performance of a fixed inclined slider bearing. Ozap and 

Umur [20] proposed an optimum surface profile design 

performance by implementing a wavy form of roughness on 

the pad. Recently Sinha and Getachew [21] numerically 

analyzed the combined effect of thermal and surface 

roughness on the performance of an infinitely long slider 

bearing using stochastic approach. In their study two types of 

roughness: longitudinal roughness and transverse roughness 

were considered. The analysis indicated that for parallel 

sliders some load capacity may be generated due to the 

combined effect for both types of roughness. 

All of the works that has appeared in literature do not seem 

to conform to the experimental results obtained for parallel 

sliders. It seems natural that as a consequence of heating, there 

would be a thermal expansion in asperities and probably a 

distortion of the slider surface. Thus in this paper the effect of 

thermal distortion of the slider and asperities on different 
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characteristics of an infinitely tilted pad rough slider bearing is 

analyzed using stochastic approach. 

II. GOVERNING EQUATIONS  

The geometry for the infinitely long slider bearing analyzed 

in this paper is shown in Fig. 1. The width of the bearing is 

assumed to be very large as compared to the distance between 

the pad and the slider surfaces.  

 

 

Fig. 1 Schematic diagram of a rough slider bearing after deformation 

 

In view of the usual assumptions of the lubrication theory, 

Navier -Stokes equations reduced to: 

 

( )  
u dp

y y dx
µ

∂ ∂
=

∂ ∂
       (1) 

 

and 

( ) ( ) 0u v
x y

ρ ρ
∂ ∂

+ =
∂ ∂

           (2) 

 

Integrating (1) and (2) with the boundary conditions u=U, 

v=0 at the slider and u=v=0 at the pad and substituting 

 by  and  by avg avgρ ρ µ µ leads to the generalized Reynolds 

type equation: 

 

( )
3

6

avg

avg

avg

H dp
U H

x dx x

ρ
ρ

µ

 ∂ ∂
=  ∂ ∂                   

(3) 

 

where H  is the geometry of the fluid film. 

The usual lubrication assumptions along with the following 

assumptions: 

o Conduction terms other than those across the fluid film 

are negligible 

o Thermal conductivity and specific heat are constant. lead 

to a steady state energy equation: 

 
22

2o

T T T u
c u v k

x y y y
ρ µ

   ∂ ∂ ∂ ∂
+ = +   ∂ ∂ ∂ ∂   

   (4) 

 

 

 

 

Viscosity and density are related to temperature via the 

following relationships:  

 

(1 ( ))a aT Tρ ρ λ= − − , exp( ( ))a aT Tµ µ β= − −   (5) 

(1.0 ( ))avg a avg aT Tρ ρ λ= − −  

exp( ( ))avg a avg aT Tµ µ β= − −                    (6) 

 

In the stochastic theory of an isothermal hydrodynamic 

lubrication of rough surface bearings developed by 

Christensen and Tonder [14] and Christensen [15], a 

Reynolds-type equation in the mean pressure as applicable to 

rough surface bearings is formulated by considering the film 

thickness as ergodic (stationary) stochastic process.  

In such studies the geometry of the lubricant film

( , , )H x z ε  is generally considered to be made up of two 

parts; the nominal (smooth) part which measures the large 

scale part of the film geometry including any long wave length 

disturbances, and a randomly varying quantity with zero mean 

(arises due to the surface roughness measured from the 

nominal level). However, due to thermal distortion, the film 

thickness shall be modified. It is assumed that the distortion 

leads to a profile of the slider which may be parabolic. Thus 

the equation of the slider profile may have the following form: 

2

2

4
( 0.5 )s

K
h K x B

B
= − − for some dimensional constant K. 

 Hence, the lubricant film height is of the form: 

 

( , , ) (1 )dH x z hε α δ= + +  

 

where d sh h h= − , h is the nominal film height before 

thermal distortion, α is thermal expansion and δ random 

roughness variable. 

The stochastic theory developed by Christensen and Tonder 

[14] and Christensen [15] was based on the following 

additional assumptions:   

1. The magnitude of the pressure ripples associated with the 

surface roughness is small compared with the general 

pressure level in the bearing, and consequently, the 

variance of the pressure gradient in the roughness 

direction is negligible. 

2. In the direction perpendicular to the roughness direction 

the variance of unit flow is negligible. 

Sinha and Getachew [21] imposed the following additional 

assumption to approximate the momentum, continuity and 

energy equations. 

3. The magnitudes of temperature and velocities associated 

to roughness are small compared to the corresponding 

general magnitudes in the bearing. Consequently, the 

variances of  ρ , µ , temperature gradient in the direction 

of roughness, temperature gradient T

y

∂
∂

and velocity 

gradient u

y

∂
∂

are negligible. 
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The theory is applied for two types of one dimensional 

roughness pattern: longitudinal roughness and transverse 

roughness. By taking the expected values of both sides of 

Reynolds equation (3), Sinha and Getachew [21] obtained: 

 

( )
3

6

avg

avg

avg

H dp
E U E H

x dx x

ρ
ρ

µ

  ∂ ∂
=   ∂ ∂   

   (7) 

 

where E(s) is the expectancy operator defined by  

 

( ) ( )E s sf s ds
∞

−∞
= ∫  

 

and f(s) is the probability density distribution for the stochastic 

variable s. 

Following an approximation process similar to those 

mentioned by Christensen and Tonder [14], Christensen [15] 

and Sinha and Getachew [21], the corresponding governing 

equations are obtained.  

The modified Reynolds type equations for longitudinal 

roughness:  

 

( )31
  avg

avg

d p
E H

x dx
ρ

µ

 ∂
  ∂  

= ( )6 ( )avgU E H
x

ρ
∂
∂

       (8) 

 

The modified Reynolds type equations for transverse 

roughness:  

 

( )3

1 1
  avg

avg

d p

x dxE H
ρ

µ −

 ∂  
 ∂  

=
2

3

( )
6

( )
avg

E H
U

x E H
ρ

−

−

 ∂
 ∂  

  (9) 

 

According to Christensen and et al. [16] and using 

properties of variance: 

 

( ) ( )3 3 2 23 (1 ) ,  E H hd d dE H h h α σ= + + =  

3 2 2

3

1
6 (1 )

( )
d dh h

E H
α σ

−
= − + and 

2 2 2

3 2

( ) 3(1 )
(1 )

( )
d

d

E H
h

E H h

α σ−

−

+
= −  

 

where σ
2
 is the variance of the roughness distribution with 

/ 1dhσ << . Hence the modified Reynolds equations (8) and 

(9) can be rewritten respectively as:  

 

( )3 2 21
  (h  +3h (1 ) ) 6avg avgd d d

avg

d p
U h

x dx x
ρ α σ ρ

µ

 ∂ ∂
+ =  ∂ ∂ 

 (10) 

3 2 2

2 2

2

1
  (h - 6h (1 ) )

3(1 )
6 (1 )

avg d d

avg

avg d

d

d p

x dx

U h
x h

ρ α σ
µ

α σ
ρ

 ∂
+ = 

 ∂  

 ∂ +
− 

∂  

      (11) 

 

Momentum, continuity and energy equations for both kinds 

of models can be approximated respectively as: 

 

( )    
u d p

y y dx
µ

∂ ∂
=

∂ ∂
           (12) 

( ) ( ) 0   u v
x y

ρ ρ
∂ ∂

+ =
∂ ∂

     (13) 

2
2

2

T T T u
c u v k

x y y y
ρ µ

   ∂ ∂ ∂ ∂
+ = +   

∂ ∂ ∂ ∂   
       (14) 

 

The following non-dimensional variables are used: 

 

* * * * *
,  ,   , ,  ,

i i i

x y h u vB
x y h u v

B h h U Uh
= = = = =  

2 2
* * * * , , , ,

avg i i i
avg i

a a a a

T ph p hT
T T p p

T T UB UBµ µ
= = = =  

2 2
* * *, Pr , , ,a i a

e a a a

o o a

Uch U
P Ec T T T

k B k T

ρ µ
β β λ λ α α= = = = =

* * * *

* * *

, , = ,   ,

, , /

avg avg

avg avg

a a a a

i

i i

K K h
h h

µ ρµ ρ
µ µ ρ ρ

µ µ ρ ρ

σ δ
σ δ

= = =

= = =

 

 

Non-dimensionalization of the smooth part of the slider 

profile yields:  

 
* * * * 24 ( 0.5)sh K K x= − −  

 

Since the parabolic shape of the slider is due to thermal 

distortion of the slider and the load applied, it is logical to 

assume that the arc length of the curvature equals to the width 

of the bearing due to thermal expansion. Using this 

assumption and the integral arc length formula the non-

dimensional equation of the slider profile is approximated to 

be  

 

* * * 20.5 ( 1 4( 0.5) ).sh xα= − + −  
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The non-dimensional forms of the governing equations (10-

14) respectively are as follows: 

 
* *3 * * 2 *2 *

* * *

* *

*

( 3 (1 ) )
( )

6

( )

avg d d

avg

avg d

h h dp

x dx

h
x

ρ α σ

µ

ρ

+ +∂
=

∂

∂
∂

     (15) 

* 3 * * 2 *2 *

* * *

* 2 *2
* *

* *

( 6 (1 ) )

6

3(1 )
( )

avg d d

avg

avg d

d

h h dp

x dx

h
x h

ρ α σ

µ

α σ
ρ

 − +∂
=  ∂  

 ∂ +
− 

∂  

     (16) 

* *
*

* * *
( )

u dp

y y dx
µ

∂ ∂
=

∂ ∂
                            (17) 

* * * *

* *
( ) ( ) 0u v

x y
ρ ρ

∂ ∂
+ =

∂ ∂
                   (18) 

2
* * 2 * *

* * * *

* * *2 *

P1 r c

e e

ET T T u
u v

x y P y P y
ρ µ

   ∂ ∂ ∂ ∂
+ = +   ∂ ∂ ∂ ∂   

(19) 

 

Fluid boundary conditions: 

The boundary conditions for pressure and velocities are: 

 
* * * * * *0 at 0,  0 at 1, 1, 0p x p x u v= = = = = =  

 

at the slider, 
* * 0 at the padv u= =  

 

The boundary conditions associated with the energy 

equation are: 

 

T
*
=Ti 

 
at x

*
 =0, T

*
=Ts 

 

on the slider and 

T* = Tu 

 

on the pad, where  Ts and Tu are plate temperatures, Ti inlet 

temperature.  

The following three conditions are considered: 

 

a.     i s uT T T= =  

b. 
*  and  u i s avgT T T T= =  

c.  
*   u s avgT T T= =  

 

Condition (a) implies the plate temperatures are constant, 

conditions (b) and (c) imply that one or both plate 

temperatures are variable and shall be equal to the average 

fluid temperature. 

III. FORMULATION OF THE PROBLEM 

To simplify the numerical computation, the irregular 

domain of the fluid is transformed to regular geometric 

domain. Assuming the roughness on the pad and the 

roughness on the runner to be identical random distributions 

(δ1= δ2), the following linear transformations are used similar 

to those of Sinha and Getachew [21]: 

 
* * * * *

1 '  (1 ) ,   0 ' 1d sy y h h yα δ= + + + ≤ ≤
   

* 'x x=  

 

These transformations will map the lower boundary of the 

fluid on to y' =0 and the upper boundary of the fluid on to 

y'=1.  

Using these transformations the governing equations can be 

rewritten as follows:  

 
* *3 * * 2 *2 *

* *

' * ' '

( 3 (1 ) )
( ) ( )

6

avg d d

avg d

avg

h h dp
h

x dx x

ρ α σ
ρ

µ

+ +∂ ∂
=

∂ ∂
(20) 

* *3 * * 2 *2 *

' * '

* 2 *2
* *

' *

( 6 (1 ) )

6

3(1 )
( )

avg d d

avg

avg d

d

h h dp

x dx

h
x h

ρ α σ

µ

α σ
ρ

 − +∂
=  ∂  

 ∂ +
− 

∂  

        (21) 

* *
*

*2 ' ' '

1
( )

d

u dp

h y y dx
µ

∂ ∂
=

∂ ∂
        (22) 

' *

* * * ' * *

' * ' '

* *

* '

1
( ) 8 0.5 ( 0.5) ( )

1
( ) 0

d

d

d

y dh
u x u

x h dx y

v
h y

ρ α ρ

ρ

 ∂ ∂
− + − + 

∂ ∂ 
∂

=
∂

 (23) 

' ** *
* * '

' * ' '

*

*
*

* '

2
2 * *

*

*2 '2 *2 '

1
8 0.5 ( 0.5)

1

P1

d

d

d

r c

d e d e

y dhT T
u x

x h dx y

T
v

h y

ET u

h P y h P y

α

ρ

µ

   ∂ ∂
− + − +    ∂ ∂    = 

∂ 
 ∂ 

 ∂ ∂
+  

∂ ∂ 

     (24) 

 

The corresponding non dimensional density and viscosity 

relationships in the new coordinate system are: 

 
* * * * * *1.0 ( 1.0),   exp( ( 1.0))T Tρ λ µ β= − − = − −  (25) 

* * *

1
* * * * *

0

1.0 ( 1.0),    

 exp( ( 1.0)), where = ' 

avg avg

avg avg avg

T

T T T dy

ρ λ

µ β

= − −

= − − ∫      

(26) 
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The non dimensional load carrying capacity W
*
 and the 

friction force F
*
 are determined from the following 

expressions respectively: 

 
2

1
* *

2 0
'   i

a

Wh
W p dx

UBρ
= = ∫           (27) 

*
1

* * '

' 0* '0
( )i

y

a d

Fh u
F dx

UB h y
µ

µ =

∂
= =

∂∫             (28) 

IV.  TREATMENT OF THE SOLUTION  

The system of equations was discretized and solved 

simultaneously using finite difference technique. Backward 

difference is used for the derivatives 
*

'

v

y

∂
∂

 in the continuity 

equation and 
*

'

T

x

∂
∂

 in the energy equation. For all other 

derivatives central difference is used except at the boundaries. 

Appropriate one sided difference is used at the boundaries.  

A direct iterative approach was used to obtain the 

distributions of all field variables. At every iteration level, the 

governing equations are solved in a decoupled form. 

The results have been obtained to an accuracy of Tol=
610−

 

, where 

 

max
| |

,    
| |

new

j j

jnew

j

old
Tol

ζ ζ
ζ

ζ

 −
≤  

 
 

 

are the field variables. 

The iteration is carried out for Tol=
510−

, Tol=
610−

, Tol=
710−

 and there is no significant difference in the values. 

A. Algorithm 

In the computational work, two stages of computations are 

used. In the first stage all the field variables and average 

temperature across the film are approximated using α
*
 =0 and 

prescribed constant slider temperature Ts (before thermal 

distortion is taking place). In the second stage the equations 

are solved using non-zero α
*
 and slider temperature 

*

s avgT T=
taking the values obtained from stage one as initial data for the 

variables. 

Step 1.  Initialization 

a Input data:  

ko, B, 
* * * * *, , , , , , , 0i r c eh P E Pλ β σ α =  

b Set boundary conditions for 
* * * *, , ,u v T p  

c Set fictitious values for 
* * * *, , ,u v T p  to 

the remaining grid points 

Step 2. Evaluate 
*newp using 

* * *,   ,    old old old

avg avg avgTρ µ  

Step 3.  Evaluate 
*newu  using

*newp ,
* oldT  

Step 4. Evaluate 
*newv  using 

* * and new oldu T   

Step 5. Evaluate 
*newT  using,

* * * *, , ,  new new new oldp u v T   

Step 6. Evaluate: 

* * * * *

*

, , , ,  

using 

new new new new new

avg avg avg

new

T

T

ρ µ ρ µ
  

Step 7. Test for convergence. 

Step 8. Repeat steps 2-7 till convergence is obtained. 

Step 9. Set an appropriate non zero α
*
 and reset the thermal 

boundary conditions in terms of  Ti and T
*

avg 

Step 10. Repeat steps 2-9 till 

* *

*

| |

| |

new old

avg avg

new

avg

T T
Tol

T

−
<  

Step 11. Calculate load capacity W
*
 and friction force F

*
. 

V. RESULTS AND DISCUSSION  

In the present study the values of the following parameters 

are chosen.  

U=20 m/s,hi=0.00005m, B=0.1m, c=1926J/kg K, Ta=310K, 

ρa=897.1kg/m
3
,    µa=0.0174pa.s, β=0.035/K, λ=0.0012/K, 

ko=0.132 W/(mK), α =13 m/(mK).  

The simulation has been carried out for various values of m, 
* *,λ β and 

*σ with fixed values of the parameters α, Pe ,Pr 

and Ec . The effect of roughness is felt only through    

/ 3oh σ  , where oh  is the minimum film thickness [14]. The 

roughness effects are not important if 3oh σ>> .  However, 

when 3oh σ≈ (within the hydrodynamic limit i.e 3oh σ> ) 

the  influence on the bearing performance is significant. For 

comparison purposes, the roughness parameter 
*σ is fixed at 

0.1 which is 25% and 10% of the minimum film thickness for 

m=0.4 and m=1.0(parallel sliders) respectively. Also  λ* =0.4 

is fixed for the same. The performance of the bearing is 

observed for different values of 
*β (

*β =1.0, 5.0, 10.0). 

The results have been analyzed, for pressure distribution, 

load capacity, friction force and temperature. The results are 

presented in the form of graphs and tables. To ensure the grid 

independence of the results, the numerical simulations are 

carried out on different grid systems consisting of 10x10, 

20x20, 30x30 and 40x40 grid points. The load capacities of 

the bearings obtained using different grids have been 

compared and presented in Fig. 2. From this figure it can be 

concluded that the 40x40 grid system yields a grid 

independent solution. 
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Fig. 2 Dimensionless load capacity versus inclination parameter for 

different grids systems 

 

In the results that follow, emphasis has been given to the 

following three cases of thermal boundary conditions: 

Case.i Before distortion(     i s uT T T= = ) 

Case.ii After distortion (
*  and  u i s avgT T T T= = ) 

Case.iii After distortion ( 
*   

u s avg
T T T= = ) 

As a consequence of thermal distortion the following 

situations may occur in the bearing: 

• The fluid temperature rises (Fig. 3) which in turn reduces 

the fluid viscosity. Consequently the pressure may 

decrease and this may lead to a reduction in the load 

capacity. 

•  The average thickness may increase (due to the parabolic 

profile of the slider). The increased volume inside the 

bearing may result in a decrease of flow pressure and 

hence in a decrease of load capacity (see Fig. 1) 

• The asperities of both surfaces may be distorted.  Because 

of this the average film thickness may be decreased and 

hence the load capacity is likely to be enhanced.  

 

 

Fig. 3 Dimensionless temperature distributions for transverse 

roughness (m=0.4, Ti=1.0) 

 

 

Fig. 4 Dimensionless pressure distributions for transverse roughness 

(m=0.4, Ti=1.0) 

 

The total sum effect of the above conditions on pressure and 

temperature distributions are shown in Figs. 3 and 4 

respectively. From Fig. 3 one can easily observe that the 

bearing temperature distributions are higher in Cases.ii and iii 

as compared to that for Case.i. From Fig. 4 the pressure 

distributions for Cases.ii and iii are less than that for Case.i. 

For non-parallel bearings (m=0.4) the load capacity decreases 

by 11% for longitudinal roughness and by 12% for transverse 

roughness for Case ii , and by 47 % for longitudinal and56 % 

for transverse roughness for Case iii as compared to that for 

Case i (see Fig. 5 and Tables I, II). Whereas, for parallel 

bearings (m=1.0) the load capacity is generated and increases 

by 7% for Case.ii and more than 50% for Case.iii as compared 

to that for Case. i, for both types of surface roughness (see Fig. 

6 and Tables I, II). From this, one can conclude that the 

thermal expansion of the fluid and the bearing asperities may 

be one of the most important factors for load capacity 

generation in parallel bearings. 

 For m=0.4 the friction force decreases by 15% for Case.ii 

and by more than 50% for Case.iii for both types of roughness 

as compared to that for Case.i. Unlike the load capacity the 

friction force decreases by 7% and 18% for Cases.ii and iii as 

compared to that for Case.i, respectively for parallel bearings 

(see Tables I, II). It is because the viscosity of the fluid 

decreases due to temperature rise in the fluid (see Fig. 6). 

From the above it can be seen that the thermal distortion 

effects are less for Case.ii compared to that for Case.iii. Thus, 

it is possible to improve the performance of the bearing by 

cooling the pad even when thermal distortion takes place.  

In the Tables I and II, Q1 and Q2 are defined as follows: 

 

1

Case.i Case.ii
Q

Case.ii

−
= ,  

2

Case.i Case.iii
Q

Case.iii

−
=  
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TABLE I 

LOAD CAPACITY AND FRICTION FORCE DISTRIBUTIONS FOR LONGITUDINAL ROUGHNESS (Β*=10, Σ*=0.1) 

m Ti Case.i Case.ii Q1% Case.iii Q2% 

0.4 

1 
W* 0.810618 0.733274 11 0.550455 47 

F* 1.582893 1.378491 15 0.95897 65 

1.1 
W* 0.320297 0.300133 7 0.255736 25 

F* 0.625716 0.576013 9 0.471121 33 

1.2 
W* 0.121313 0.115433 5 0.106391 14 

F* 0.237074 0.223795 6 0.203211 17 

1.0 

1 
W* 0.001687 0.001839 8 0.003864 56 

F* 0.933435 0.871956 7 0.790967 18 

1.1 
W* 0.000265 0.000304 13 0.000706 62 

F* 0.361855 0.345691 5 0.331033 9 

1.2 
W* 0.000039 0.000041 5 0.000113 65 

F* 0.135884 0.130938 4 0.128694 6 

 
TABLE II 

LOAD CAPACITY AND FRICTION FORCE DISTRIBUTIONS FOR TRANSVERSE ROUGHNESS (Β*=10, Σ*=0.1) 

m T Case.i Case.ii Q1% Case.iii Q2% 

0.4 

1 
W* 1.134857 1.016186 12 0.725157 56 

F* 1.658952 1.436445 15 0.898316 84 

1.1 
W* 0.450209 0.422703 7 0.355503 26 

F* 0.651177 0.595621 9 0.45842 42 

1.2 
W* 0.1709 0.164147 4 0.154614 11 

F* 0.246735 0.233044 6 0.205212 20 

1 

1 
W* 0.001793 0.001932 7 0.004128 56 

F* 0.933422 0.87207 7 0.791021 18 

1.1 
W* 0.000282 0.00032 11 0.00065 56 

F* 0.361851 0.345699 5 0.331182 9 

1.2 
W* 0.000041 0.000043 5 0.000125 67 

F* 0.135882 0.130937 4 0.128694 6 

 

 

Fig. 5 Load capacities and friction forces for both types of roughness 

(m=0.4, Ti=1.0) 

 

Fig. 6 Dimensionless temperature distributions for transverse 

roughness (m=1.0, Ti=1.0) 

 

Tables III and  IV show the load capacity and friction force 

distributions for two values of thermal coefficient in viscosity 

formula (β=1.0, 5.0).For both values of β the load capacity of 

parallel bearing is increased for both types of roughness for 

Cases.ii and  iii as compared to that for Case.i. It is also 

observed that for β=1.0 the load capacity of non- parallel 

bearing is increased for transverse roughness for Cases.ii and 

iii as compared to that for Case.i though small. From the tables 

one can also observe that the effects of thermal distortion with 

β=1.0, 5.0 are less compared to the effects of thermal 

distortion with β=10.0. 
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TABLE III 

LOAD CAPACITY AND FRICTION FORCE DISTRIBUTIONS FOR LONGITUDINAL ROUGHNESS (Σ*=0.1) 

m Ti 
β=1.0 β=5.0 

Case.i Case.ii Case.iii Case.i Case.ii Case.iii 

0.4 

1 
W* 0.895921 0.859046 0.848792 0.854941 0.796079 0.669989 

F* 1.759031 1.671508 1.568962 1.673613 1.520424 1.19623 

1.1 
W* 0.811673 0.77799 0.769007 0.531299 0.500307 0.440742 

F* 1.59361 1.515962 1.426974 1.039714 0.963603 0.809722 

1.2 
W* 0.73527 0.704514 0.697476 0.327266 0.310578 0.283338 

F* 1.443588 1.374385 1.297524 0.640268 0.601551 0.601551 

1 

1 
W* 0.001996 0.003253 0.008094 0.001848 0.002558 0.005834 

F* 1.007388 0.973182 0.960352 0.972787 0.924767 0.87386 

1.1 
W* 0.001694 0.00281 0.007112 0.00073 0.001037 0.002487 

F* 0.91221 0.881463 0.870304 0.599958 0.574525 0.552989 

1.2 
W* 0.001438 0.002403 0.006277 0.000284 0.000404 0.001034 

F* 0.825975 0.798395 0.788673 0.367716 0.353948 0.353948 

 
TABLE IV 

LOAD CAPACITY AND FRICTION FORCE DISTRIBUTIONS FOR TRANSVERSE ROUGHNESS (Β*=10, Σ*=0.1) 

 

m 
Ti 

β=1.0 β=5.0 

Case.i Case.ii Case.iii Case.i Case.ii Case.iii 

0.4 

 

1 
W* 1.260287 1.208933 1.227395 1.199058 1.109232 0.910307 

F* 1.830374 1.7388 1.601719 1.742508 1.56958 1.152221 

1.1 
W* 1.142047 1.098967 1.12572 0.746741 0.704758 0.617562 

F* 1.658417 1.578131 1.459962 1.08171 0.997413 0.795686 

1.2 
W* 1.034769 0.998841 1.029391 0.46063 0.440036 0.407334 

F* 1.502429 1.431701 1.32994 0.66623 0.625933 0.531966 

1 

1 
W* 0.002121 0.003494 0.009203 0.001963 0.002735 0.006459 

F* 1.007379 0.973145 0.960216 0.972774 0.92479 0.873787 

1.1 
W* 0.0018 0.003035 0.008314 0.000776 0.000997 0.002823 

F* 0.912203 0.881437 0.870164 0.599951 0.997413 0.552971 

1.2 
W* 0.001527 0.002628 0.007449 0.000302 0.000424 0.00119 

F* 0.825967 0.798365 0.788534 0.367712 0.353947 0.34504 

 

For different values of inlet temperature Ti the thermal 

distortion effects are given in the Tables I-IV. From these 

tables one can observe that as the inlet temperature increases 

the thermal distortion effect on the performance of the bearing 

decreases (see Figs. 5 and 7) 

VI. CONCLUSION  

The stochastic approach for hydrodynamic lubrication for 

rough surface bearings is extended to the study of thermo-

hydrodynamic lubrication of rough surface bearings 

considering thermal distortion of the slider and asperities. For 

both roughness models, it is seen that the load carrying 

capacity and friction force are decreased due to thermal 

distortion for non parallel bearings. For parallel bearings the 

load capacity is enhanced and friction force is decreased due 

to thermal distortion of the slider and asperities. It is also 

observed that for both models, the effects of thermal distortion 

for Case.ii are less compared to that for Case.iii. From this one 

can concluded that cooling the pad can improve the 

performance of the bearing. Moreover the effect of thermal 

distortion is more pronounced in the case of low inlet 

temperatures.  

 

 

Fig.7 Load Capacity for both types of roughness with different inlet 

temperatures (Ti=1.1 and Ti=1.2) 

NOMENCLATURE 

B   bearing width  

c   specific heat of lubricant 

cE   Eckert number 

E   expected value operator 

F   frictional drag force 

h   nominal film thickness 

hi           nominal film thickness at the leading edge 

ho          nominal film thickness  at the trailing edge 
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H           the height of the film for rough surface 

0k   thermal conductivity of the lubricant 

m   ho/hi 

p   film pressure  

eP   Peclet number 

pi   inlet pressure 

rP   Prandtl number 

T   lubricant temperature 

Tu, Ts temperatures of plates 

Ti   inlet temperature 

u,v         fluid velocities 

U       velocity of the moving surface 

x, y        coordinate system 

x', y'  transformed coordinate system 

W          load carrying capacity of the bearing 

Α         thermal expansion coefficient 

β      temperature coefficient in viscosity formula 

δ      random distributions of roughness  

ε      random variable 

λ      temperature coefficient in density formula 

µ      viscosity of the lubricant 

ρ      density of the lubricant 

σ2      variance of roughness 

Super script * depicts a corresponding non dimensional 

quantity and bar above a variable depicts the corresponding 

expected value. The suffix ‘a’ in a variable indicates the 

ambient value and the suffix ‘avg’ indicates the average value 

across the film of the corresponding quantity. 
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