Search results for: computational intelligence
42 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling
Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo
Abstract:
Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.
Keywords: Computational modelling, evolutionary algorithms, genetic programming, hydrological modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332941 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology
Authors: Sanjeev Kumar Appicharla
Abstract:
This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety critical incident to raise awareness of biases in systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the Methodology used to model and analyse the safety-critical incident. The SIRI Methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the Management Oversight and Risk Tree technique. The benefits of the SIRI Methodology are threefold: first is that it incorporates “Heuristics and Biases” approach, in the Management Oversight and Risk Tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling technique. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organisational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signalling firms and transport planners, and front-line staff such that lessons learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner’s and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision making and risk management processes and practices in the IEC 15288 Systems Engineering standard, and in the industrial context such as the GB railways and Artificial Intelligence (AI) contexts as well.
Keywords: Accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37940 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation
Authors: S. D. El Wakil, J. Rice
Abstract:
The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.Keywords: Finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210339 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning
Authors: Jean Berger, Mohamed Barkaoui
Abstract:
Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.
Keywords: Search path planning, false alarm, search-and-delivery, entropy, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196738 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera
Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl
Abstract:
Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The root mean square errors (RMSE) between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.
Keywords: Neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57537 Cardiac Biosignal and Adaptation in Confined Nuclear Submarine Patrol
Authors: B. Lefranc, C. Aufauvre-Poupon, C. Martin-Krumm, M. Trousselard
Abstract:
Isolated and confined environments (ICE) present several challenges which may adversely affect human’s psychology and physiology. Submariners in Sub-Surface Ballistic Nuclear (SSBN) mission exposed to these environmental constraints must be able to perform complex tasks as part of their normal duties, as well as during crisis periods when emergency actions are required or imminent. The operational and environmental constraints they face contribute to challenge human adaptability. The impact of such a constrained environment has yet to be explored. Establishing a knowledge framework is a determining factor, particularly in view of the next long space travels. Ensuring that the crews are maintained in optimal operational conditions is a real challenge because the success of the mission depends on them. This study focused on the evaluation of the impact of stress on mental health and sensory degradation of submariners during a mission on SSBN using cardiac biosignal (heart rate variability, HRV) clustering. This is a pragmatic exploratory study of a prospective cohort included 19 submariner volunteers. HRV was recorded at baseline to classify by clustering the submariners according to their stress level based on parasympathetic (Pa) activity. Impacts of high Pa (HPa) versus low Pa (LPa) level at baseline were assessed on emotional state and sensory perception (interoception and exteroception) as a cardiac biosignal during the patrol and at a recovery time one month after. Whatever the time, no significant difference was found in mental health between groups. There are significant differences in the interoceptive, exteroceptive and physiological functioning during the patrol and at recovery time. To sum up, compared to the LPa group, the HPa maintains a higher level in psychosensory functioning during the patrol and at recovery but exhibits a decrease in Pa level. The HPa group has less adaptable HRV characteristics, less unpredictability and flexibility of cardiac biosignals while the LPa group increases them during the patrol and at recovery time. This dissociation between psychosensory and physiological adaptation suggests two treatment modalities for ICE environments. To our best knowledge, our results are the first to highlight the impact of physiological differences in the HRV profile on the adaptability of submariners. Further studies are needed to evaluate the negative emotional and cognitive effects of ICEs based on the cardiac profile. Artificial intelligence offers a promising future for maintaining high level of operational conditions. These future perspectives will not only allow submariners to be better prepared, but also to design feasible countermeasures that will help support analog environments that bring us closer to a trip to Mars.Keywords: Adaptation, exteroception, HRV, ICE, interoception, SSBN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49436 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination
Authors: N. Santatriniaina, J. Deseure, T.Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana
Abstract:
Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 [mm] is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.
Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317335 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province
Authors: Yujie Zhao, Jiantao Weng
Abstract:
In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.
Keywords: Air infiltration, commercial complex, heat consumption, CFD simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76434 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms
Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano
Abstract:
In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general-purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.Keywords: Heuristic, MIP model, Remedial course, School, Timetabling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163433 Using the Monte Carlo Simulation to Predict the Assembly Yield
Authors: C. Chahin, M. C. Hsu, Y. H. Lin, C. Y. Huang
Abstract:
Electronics Products that achieve high levels of integrated communications, computing and entertainment, multimedia features in small, stylish and robust new form factors are winning in the market place. Due to the high costs that an industry may undergo and how a high yield is directly proportional to high profits, IC (Integrated Circuit) manufacturers struggle to maximize yield, but today-s customers demand miniaturization, low costs, high performance and excellent reliability making the yield maximization a never ending research of an enhanced assembly process. With factors such as minimum tolerances, tighter parameter variations a systematic approach is needed in order to predict the assembly process. In order to evaluate the quality of upcoming circuits, yield models are used which not only predict manufacturing costs but also provide vital information in order to ease the process of correction when the yields fall below expectations. For an IC manufacturer to obtain higher assembly yields all factors such as boards, placement, components, the material from which the components are made of and processes must be taken into consideration. Effective placement yield depends heavily on machine accuracy and the vision of the system which needs the ability to recognize the features on the board and component to place the device accurately on the pads and bumps of the PCB. There are currently two methods for accurate positioning, using the edge of the package and using solder ball locations also called footprints. The only assumption that a yield model makes is that all boards and devices are completely functional. This paper will focus on the Monte Carlo method which consists in a class of computational algorithms (information processed algorithms) which depends on repeated random samplings in order to compute the results. This method utilized in order to recreate the simulation of placement and assembly processes within a production line.
Keywords: Monte Carlo simulation, placement yield, PCBcharacterization, electronics assembly
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216632 64 bit Computer Architectures for Space Applications – A study
Authors: Niveditha Domse, Kris Kumar, K. N. Balasubramanya Murthy
Abstract:
The more recent satellite projects/programs makes extensive usage of real – time embedded systems. 16 bit processors which meet the Mil-Std-1750 standard architecture have been used in on-board systems. Most of the Space Applications have been written in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are needed in the area of spacecraft computing and therefore an effort is desirable in the study and survey of 64 bit architectures for space applications. This will also result in significant technology development in terms of VLSI and software tools for ADA (as the legacy code is in ADA). There are several basic requirements for a special processor for this purpose. They include Radiation Hardened (RadHard) devices, very low power dissipation, compatibility with existing operational systems, scalable architectures for higher computational needs, reliability, higher memory and I/O bandwidth, predictability, realtime operating system and manufacturability of such processors. Further on, these may include selection of FPGA devices, selection of EDA tool chains, design flow, partitioning of the design, pin count, performance evaluation, timing analysis etc. This project deals with a brief study of 32 and 64 bit processors readily available in the market and designing/ fabricating a 64 bit RISC processor named RISC MicroProcessor with added functionalities of an extended double precision floating point unit and a 32 bit signal processing unit acting as co-processors. In this paper, we emphasize the ease and importance of using Open Core (OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as Icarus to develop FPGA based prototypes quickly. Commercial tools such as Xilinx ISE for Synthesis are also used when appropriate.Keywords: RISC MicroProcessor, RPC – RISC Processor Core, PBX – Processor to Block Interface part of the Interconnection Network, BPX – Block to Processor Interface part of the Interconnection Network, FPU – Floating Point Unit, SPU – Signal Processing Unit, WB – Wishbone Interface, CTU – Clock and Test Unit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224831 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor
Authors: Damian Ramajo, Santiago Corzo, Norberto Nigro
Abstract:
A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.Keywords: CFD, PHWR, Thermo-hydraulic, Two-phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271030 Real-Time Vision-based Korean Finger Spelling Recognition System
Authors: Anjin Park, Sungju Yun, Jungwhan Kim, Seungk Min, Keechul Jung
Abstract:
Finger spelling is an art of communicating by signs made with fingers, and has been introduced into sign language to serve as a bridge between the sign language and the verbal language. Previous approaches to finger spelling recognition are classified into two categories: glove-based and vision-based approaches. The glove-based approach is simpler and more accurate recognizing work of hand posture than vision-based, yet the interfaces require the user to wear a cumbersome and carry a load of cables that connected the device to a computer. In contrast, the vision-based approaches provide an attractive alternative to the cumbersome interface, and promise more natural and unobtrusive human-computer interaction. The vision-based approaches generally consist of two steps: hand extraction and recognition, and two steps are processed independently. This paper proposes real-time vision-based Korean finger spelling recognition system by integrating hand extraction into recognition. First, we tentatively detect a hand region using CAMShift algorithm. Then fill factor and aspect ratio estimated by width and height estimated by CAMShift are used to choose candidate from database, which can reduce the number of matching in recognition step. To recognize the finger spelling, we use DTW(dynamic time warping) based on modified chain codes, to be robust to scale and orientation variations. In this procedure, since accurate hand regions, without holes and noises, should be extracted to improve the precision, we use graph cuts algorithm that globally minimize the energy function elegantly expressed by Markov random fields (MRFs). In the experiments, the computational times are less than 130ms, and the times are not related to the number of templates of finger spellings in database, as candidate templates are selected in extraction step.Keywords: CAMShift, DTW, Graph Cuts, MRF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163629 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.
Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17228 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry
Authors: C. A. Barros, Ana P. Barroso
Abstract:
Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.
Keywords: Automotive industry, Industry 4.0, internet of things, IATF 16949:2016, measurement system analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99327 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images
Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir
Abstract:
The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement. On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.
Keywords: Automatic landing, multirotor, nonlinear control, parameters estimation, optical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52726 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction
Authors: Talal Alsulaiman, Khaldoun Khashanah
Abstract:
In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent’s attributes. Also, the influence of social networks in the developing of agents interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.Keywords: Artificial stock markets, agent based simulation, bounded rationality, behavioral finance, artificial neural network, interaction, scale-free networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252825 Automated Transformation of 3D Point Cloud to Building Information Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Petar Penchev
Abstract:
The digital era has revolutionized architectural practices, with Building Information Modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research presents a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data — a collection of data points in space, typically produced by 3D scanners — into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historical preservation.
Keywords: Algorithmic modeling, Building Information Modeling, point cloud, reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.
Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218923 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment
Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi
Abstract:
Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.
Keywords: Electric power consumption, LED color, LED lighting, plant factory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134722 A New Method for Extracting Ocean Wave Energy Utilizing the Wave Shoaling Phenomenon
Authors: Shafiq R. Qureshi, Syed Noman Danish, Muhammad Saeed Khalid
Abstract:
Fossil fuels are the major source to meet the world energy requirements but its rapidly diminishing rate and adverse effects on our ecological system are of major concern. Renewable energy utilization is the need of time to meet the future challenges. Ocean energy is the one of these promising energy resources. Threefourths of the earth-s surface is covered by the oceans. This enormous energy resource is contained in the oceans- waters, the air above the oceans, and the land beneath them. The renewable energy source of ocean mainly is contained in waves, ocean current and offshore solar energy. Very fewer efforts have been made to harness this reliable and predictable resource. Harnessing of ocean energy needs detail knowledge of underlying mathematical governing equation and their analysis. With the advent of extra ordinary computational resources it is now possible to predict the wave climatology in lab simulation. Several techniques have been developed mostly stem from numerical analysis of Navier Stokes equations. This paper presents a brief over view of such mathematical model and tools to understand and analyze the wave climatology. Models of 1st, 2nd and 3rd generations have been developed to estimate the wave characteristics to assess the power potential. A brief overview of available wave energy technologies is also given. A novel concept of on-shore wave energy extraction method is also presented at the end. The concept is based upon total energy conservation, where energy of wave is transferred to the flexible converter to increase its kinetic energy. Squeezing action by the external pressure on the converter body results in increase velocities at discharge section. High velocity head then can be used for energy storage or for direct utility of power generation. This converter utilizes the both potential and kinetic energy of the waves and designed for on-shore or near-shore application. Increased wave height at the shore due to shoaling effects increases the potential energy of the waves which is converted to renewable energy. This approach will result in economic wave energy converter due to near shore installation and more dense waves due to shoaling. Method will be more efficient because of tapping both potential and kinetic energy of the waves.Keywords: Energy Utilizing, Wave Shoaling Phenomenon
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 266921 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.
Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28420 An Overview of Some High Order and Multi-Level Finite Difference Schemes in Computational Aeroacoustics
Authors: Appanah Rao Appadu, Muhammad Zaid Dauhoo
Abstract:
In this paper, we have combined some spatial derivatives with the optimised time derivative proposed by Tam and Webb in order to approximate the linear advection equation which is given by = 0. Ôêé Ôêé + Ôêé Ôêé x f t u These spatial derivatives are as follows: a standard 7-point 6 th -order central difference scheme (ST7), a standard 9-point 8 th -order central difference scheme (ST9) and optimised schemes designed by Tam and Webb, Lockard et al., Zingg et al., Zhuang and Chen, Bogey and Bailly. Thus, these seven different spatial derivatives have been coupled with the optimised time derivative to obtain seven different finite-difference schemes to approximate the linear advection equation. We have analysed the variation of the modified wavenumber and group velocity, both with respect to the exact wavenumber for each spatial derivative. The problems considered are the 1-D propagation of a Boxcar function, propagation of an initial disturbance consisting of a sine and Gaussian function and the propagation of a Gaussian profile. It is known that the choice of the cfl number affects the quality of results in terms of dissipation and dispersion characteristics. Based on the numerical experiments solved and numerical methods used to approximate the linear advection equation, it is observed in this work, that the quality of results is dependent on the choice of the cfl number, even for optimised numerical methods. The errors from the numerical results have been quantified into dispersion and dissipation using a technique devised by Takacs. Also, the quantity, Exponential Error for Low Dispersion and Low Dissipation, eeldld has been computed from the numerical results. Moreover, based on this work, it has been found that when the quantity, eeldld can be used as a measure of the total error. In particular, the total error is a minimum when the eeldld is a minimum.
Keywords: Optimised time derivative, dissipation, dispersion, cfl number, Nomenclature: k : time step, h : spatial step, β :advection velocity, r: cfl/Courant number, hkrβ= , w =θ, h : exact wave number, n :time level, RPE : Relative phase error per unit time step, AFM :modulus of amplification factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163619 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control
Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak
Abstract:
With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.Keywords: Energy-efficient buildings, Hierarchical model predictive control, Microgrid power flow optimization, Price-optimal building climate control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152018 Detecting Tomato Flowers in Greenhouses Using Computer Vision
Authors: Dor Oppenheim, Yael Edan, Guy Shani
Abstract:
This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.Keywords: Agricultural engineering, computer vision, image processing, flower detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236717 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study
Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio D. Grieco, Emanuela Guerriero
Abstract:
Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from a real-life pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.Keywords: Constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197416 Automated, Objective Assessment of Pilot Performance in Simulated Environment
Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt
Abstract:
Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).
Keywords: Automated assessment, flight simulator, human factors, pilot training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80815 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows
Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid
Abstract:
Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.Keywords: Optimal control, ensemble Kalman Filter, topography reconstruction, data assimilation, shallow water equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67914 On the Optimality Assessment of Nanoparticle Size Spectrometry and Its Association to the Entropy Concept
Authors: A. Shaygani, R. Saifi, M. S. Saidi, M. Sani
Abstract:
Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nanoparticles under the influence of electric field in Electrical Mobility Spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined fielddiffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multichannel EMS. The result, a cloud of particles with no uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using Computational Fluid Dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.Keywords: Aerosol Nano-Particle, CFD, Electrical Mobility Spectrometer, Von Neumann entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185913 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature
Authors: Josef Novák, Alena Kohoutková
Abstract:
The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.
Keywords: Elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122