


Abstract—The digital era has revolutionized architectural

practices, with Building Information Modeling (BIM) emerging as a
pivotal tool for architects, engineers, and construction professionals.
However, the transition from traditional methods to BIM-centric
approaches poses significant challenges, particularly in the context of
existing structures. This research presents a technical approach to
bridge this gap through the development of algorithms that facilitate
the automated transformation of 3D point cloud data into detailed BIM
models. The core of this research lies in the application of algorithmic
modeling and computational design methods to interpret and
reconstruct point cloud data — a collection of data points in space,
typically produced by 3D scanners — into comprehensive BIM
models. This process involves complex stages of data cleaning, feature
extraction, and geometric reconstruction, which are traditionally time-
consuming and prone to human error. By automating these stages, our
approach significantly enhances the efficiency and accuracy of
creating BIM models for existing buildings. The proposed algorithms
are designed to identify key architectural elements within point clouds,
such as walls, windows, doors, and other structural components, and
to translate these elements into their corresponding BIM
representations. This includes the integration of parametric modeling
techniques to ensure that the generated BIM models are not only
geometrically accurate but also embedded with essential architectural
and structural information. This research contributes significantly to
the field of architectural technology by providing a scalable and
efficient solution for the integration of existing structures into the BIM
framework. It paves the way for more seamless and integrated
workflows in renovation and heritage conservation projects, where the
accuracy of existing conditions plays a critical role. The implications
of this study extend beyond architectural practices, offering potential
benefits in urban planning, facility management, and historical
preservation.

Keywords—Algorithmic modeling, Building Information
Modeling, point cloud, reconstruction.

I. INTRODUCTION

HE integration of point cloud data into BIM has garnered
significant attention in recent years, with several successful

research efforts aimed at automating the process of converting
dense point cloud data into accurate and detailed BIM models.

Although there are some successful research papers on the
topic of converting point cloud data into BIM, there is currently
no commercially implemented methodology that has gained
widespread adoption in the industry. The existing research
offers promising solutions, but these have not yet translated into

Radul Shishkov is Master Architect, assistant professor and PhD graduate,

with the University of Architecture, Civil Engineering and Geodesy, Sofia,
Bulgaria (phone: +359 878 167 475; e-mail: rshishkov_far@uacg.bg).

practical tools that can be easily used by professionals in the
architecture, engineering, and construction (AEC) sectors.

Part of the problem lies in the technical complexity of the
proposed solutions. Many of these methodologies depend
heavily on advanced coding programs and libraries such as
Python, MATLAB, and C++. While these tools are powerful
and flexible, they require a level of programming expertise that
is not commonly found among architects and other AEC
professionals. This reliance on complex coding environments
creates a barrier to the widespread adoption of these methods,
as they are not easily accessible to most potential users.

To overcome this barrier and develop a more usable method
for converting point cloud data into BIM models, it is essential
to employ an approach that is more user-friendly and
specifically tailored to the needs of architects. Our research
addresses this need by utilizing visual scripting through the
Grasshopper and Rhino platforms, combined with the extensive
capabilities of Revit and ArchiCAD—two of the most widely
used BIM software applications among architects. This
combination allows users to generate BIM models directly from
point cloud data without the need for extensive coding
knowledge, making the process more accessible and practical
for everyday use.

Grasshopper and Rhino are particularly well-suited for this
research due to their wide availability of open-source libraries,
which can be used in a user-friendly manner. These platforms
offer a variety of potential geometry outputs, providing the
flexibility needed to handle complex architectural forms and
details. Additionally, the visual scripting environment in
Grasshopper enables users to build complex algorithms through
a graphical interface, which simplifies the process of creating
and manipulating geometry.

Our approach leverages an algorithmic methodology to
extract specific data from the point cloud and use it to rebuild
the model in different ways. By automating the extraction and
reconstruction processes, we aim to enhance the accuracy and
efficiency of the BIM model generation while maintaining a
high level of flexibility in how the models are created.

This research is closely related to the work of Bassier [1],
who also used the Rhino.Common API for data extraction and
model reconstruction via RhinoInside Revit. However, our
methodology differs in the logical operations integrated into the
Grasshopper algorithm, which adds a layer of versatility to the

Petar Penchev is Master Architect and PhD candidate, with the University
of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria (e-mail:
ppenchev_far@uacg.bg).

Radul Shishkov, Petar Penchev

Automated Transformation of 3D Point Cloud to
Building Information Model: Leveraging Algorithmic

Modeling for Efficient Reconstruction

T

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:18, No:11, 2024

423International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
iv

il
an

d
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

11
, 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

88
4.

pd
f

process. Additionally, we propose two separate approaches for
rebuilding the model: one using the Grasshopper ArchiCAD
library and another using a Python script inside Revit. These
dual approaches provide options for users depending on their
specific needs and the software they are most comfortable with.

Our work is structured as follows: In Section II, we provide
background information and review previous work in the field.
Section III presents our methodology for algorithmic data
extraction from point clouds. In Section IV, we describe the
methodology for reconstructing the geometry in a BIM format.
Finally, in Section V, we present our conclusions and suggest
directions for future research and development in this area.

II. RELATED WORK

The automatic reconstruction of 3D models has long been a
challenging area of research, with numerous studies published
over the years exploring a variety of reconstruction methods.
Despite the development of a wide range of modeling
techniques—spanning from highly manual to nearly fully
automated approaches, the task of fully automating the
reconstruction process remains a significant challenge that
continues to attract considerable attention and effort from
experts in the field.

Ochmann et al. [1] create methodology by registering
multiple indoor 3D point cloud scans and then decomposing the
point cloud into different rooms using a probabilistic clustering
algorithm. The algorithm considers the visibility between
points to determine room boundaries and assigns points to
specific rooms iteratively. Once the rooms are segmented, the
method detects doors between adjacent rooms and constructs a
graph that encodes the building's topology, representing rooms
as nodes and doors as edges.

In another step of this research [2], Ochmann et al. present a
methodology for the automatic reconstruction of parametric
building models from indoor point cloud data, with the primary
goal of creating detailed, editable, and semantically rich BIM
from point clouds captured within existing buildings. The
approach addresses the challenges associated with indoor
environments, such as clutter, occlusions, and the complexity
of architectural elements.

The process begins with the segmentation of the point cloud
into different regions corresponding to individual rooms. The
point cloud is then further segmented into planar surfaces that
represent walls, floors, and ceilings, which are classified based
on their orientation and spatial relationships. Once these
surfaces are identified, the method generates a parametric
model by fitting geometric primitives, such as planes and
cuboids, to the segmented data. This allows for the creation of
walls, doors, windows, and other architectural elements that are
essential for BIM.

Ochmann et al.'s work [1] is significant because it provides a
practical approach to automating the creation of parametric
BIM models from indoor point clouds. The research contributes
to the field by offering a method that balances automation with
the need for detailed, semantically rich models, making it
particularly relevant for applications in renovation, facility
management, and architectural analysis, where accurate and

editable BIM models are essential.
In Ochmann’s latest research [3], key innovation is

formulating the reconstruction task as an integer linear
programming problem. This allows for an exact solution that
enforces consistency and connectivity between volumetric wall
entities, unlike previous methods that often resulted in
disconnected or paper-thin surfaces.

Román et al. [4] also do not primarily focus on translating
point cloud data into BIM models; instead, their approach
begins by rationalizing curved walls through the application of
RANSAC clustering techniques. Xiong et al. [5] focus on
reconstructing the semantics in the 3D model, but also do not
tackle BIM transformations.

Some research [6], [7] emphasize on generating 2D plans
from 3D point cloud data, a crucial step in the process of
creating a comprehensive BIM model, other studies [8]-[10]
concentrate on specific BIM elements, such as walls, doors, and
ceiling.

The papers by Bassier et al. [11], [12] present an advanced
approach for the automated procedural modeling of wall
geometry from point clouds. The authors use a combination of
machine learning models and software tools like Rhino.Inside
and the Revit API to automate the process. The methodology
begins with preprocessing the point cloud data by representing
it as a voxel octree, which simplifies the data and prepares it for
further processing. Planar patches representing walls, floors,
and other structural elements are then extracted from the
vowelized data.

These planar patches are classified using a Random Forest
model, which segments the data into groups that correspond to
individual walls. Once the walls are identified, the authors of
[12] use the Rhino.Inside and Revit API to create native BIM
objects directly from the classified data.

Bassier et al.'s work [12] is particularly relevant to our
research, since Rhino the platform chosen by us to create most
of the algorithms, but aim to circumvent the Rhino.Inside API,
in order to achieve more user-friendly method for BIM
modeling in the last steps of recreating the scan in Revit.

The extensive research on previous work shows significant
advancements in the topic, but the developed techniques have
not been widely adapted by professionals yet. Our proposed
methodology aims to leverage more user-friendly algorithmic
modeling techniques, that depend on a more intuitive,
geometrically driven approach, that is not only easier to
reproduce but also more accessible for professionals who may
not have extensive technical expertise. In the following section,
we will detail our methodology, which builds on these
principles to create a more practical and widely applicable
process.

III. METHODOLOGY

A. Overview

Summary of our proposed process is shown in Fig. 1. The
point cloud is imported in Rhino3D and Grasshopper, where it
is used as input data for algorithms, which extract the data
needed for the reconstructing the model with BIM primitives.

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:18, No:11, 2024

424International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
iv

il
an

d
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

11
, 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

88
4.

pd
f

The reconstruction is also done algorithmically in two separate
ways, using Grasshopper AchiCAD live connection and
pyRevit. Thus, the whole process of transforming the point

cloud into BIM model is automated. The presented
methodology focuses on reconstructing walls and openings in
them.

Fig. 1 Process map

For importing and handling the 3D point cloud data, we
utilized the “Cockroach” library [13] within Grasshopper,
which provides a comprehensive set of tools for processing
point clouds. This library is based on the “Open3D” library
[14], a widely recognized open-source library for 3D data
processing, and it integrates features from the Computational
Geometry Algorithms Library [15] and the “Cilantro” library
[16]. The combination of these libraries within the Cockroach
framework allows for efficient and flexible manipulation of
large point cloud datasets, enabling us to perform complex
operations such as segmentation, plane detection, and data
extraction with high accuracy and speed.

B. Data Processing

The algorithm we developed begins by preprocessing the
point cloud thro ugh a manual step that involves cropping the
cloud with a predefined geometric volume, isolating a single
floor of the scanned building. This manual intervention is
necessary to focus the analysis on one floor at a time, ensuring
that the subsequent steps are accurate and manageable. Once
this is done, the algorithm proceeds automatically, divided into
several key parts: extracting data for external walls, extracting
data for interior walls, identifying window openings,
determining levels, and finally, exporting the data into other
formats suitable for further BIM modeling. This structured
approach ensures that all critical architectural elements are
accurately captured and prepared for integration into the BIM
workflow.

After cropping and cleaning the point cloud, the next step
involves down sampling the data. Down sampling is crucial for
optimizing the running time of the algorithm, especially when
dealing with large and dense point clouds. By reducing the
number of points, we can significantly decrease the
computational load, making the algorithm more efficient while
still retaining the essential geometric details needed for accurate
modeling. This optimization step is a critical part of the
workflow, as it balances the need for detail with the practical
limitations of computational resources.

C. Walls Data Extraction

The process of analyzing and extracting information for both

external and internal walls begins with clustering the points into
planes. This is a foundational step in identifying the flat
surfaces that constitute the walls of the building. To achieve
this, we first compute the normal vector for each point in the
cloud, which provides information about the orientation of the
surface at that point. The computed normals are then fed into
the Cilantro Cloud clustering algorithm, which groups the
points based on their alignment into planes. This algorithm has
proven to be faster and more effective than the traditional
RANSAC algorithm, which we previously ran in Python for
comparison.

The improved performance of the Cilantro algorithm is
particularly important because the calculation of normals and
the clustering of points into planes account for approximately
one-third of the total computational time of the algorithm. By
optimizing this step, we were able to achieve cleaner and more
accurate results in a shorter amount of time, which is crucial for
the overall efficiency of the point cloud processing workflow.

The next step in our methodology involves cleaning the
clusters obtained from the point cloud data by introducing
geometrical thresholds based on size and spatial positioning.
This cleaning process is essential for ensuring that only the
relevant points associated with walls and window planes are
retained for further analysis. By applying these thresholds, we
effectively cull out horizontal clusters and other sets of points
that do not contribute to the vertical planes of interest and are
irrelevant to our focus on walls and windows

Following the cleaning process, the algorithm proceeds with
a series of steps designed to project and interpolate the points
associated with the vertical planes. Fig. 3 shows these steps.
Initially, the points from each vertical plane are projected onto
a horizontal plane (a). This projection allows us to work with a
simplified 2D representation of the vertical structures. The
algorithm then interpolates a line through the projected points,
intersecting them with a defined threshold (b). The outcome of
this process is a rough 2D representation of the walls and
windows (c), which forms closed regions that define interior
spaces and the external boundary of the building (d). Valero et
al. [17] also solve intersections to create an enclosed area, but
they do it for planes, for which they need to solve topological

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:18, No:11, 2024

425International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
iv

il
an

d
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

11
, 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

88
4.

pd
f

connectivity first.

Fig. 2 (a) Cropped point cloud, (b) Point cloud with calculated normal, (c) Clustered point cloud by planes

Fig. 3 Extracting 2D walls data from the point cloud; (a) projecting points from planes; (b) interpolate lines and extend; (c) create regions; (d)
extract boundaries

Fig. 4.Walls data extraction: (a) Exterior walls boundary; (b) Region Boolean difference; (c) Axis extraction

Once the external 2D wall contours and their corresponding
widths have been determined, these contours serve as the basis
for extracting the boundaries of the internal walls (Fig. 4 (a)).
This is achieved through a Boolean difference operation
between the regions defined by the external walls and the
remaining unprocessed internal wall regions. By subtracting the
external wall regions, the algorithm isolates the projected
regions corresponding to the internal walls (Fig. 4 (b)). These
projected internal wall regions are then utilized as input data for
the "extract central line from buffer" algorithm, which is a
component of the "Metacity" library [18]. This algorithm
processes the internal wall regions by identifying and extracting
the central axis of each wall. To ensure that the central axes are

not overly complex and remain manageable for further
processing, they are simplified within a predefined threshold
value. This simplification process reduces the number of
vertices along the axes, while still preserving the overall
geometry and alignment of the internal walls. The result is a set
of central axes that accurately represent the internal walls'
layout, ready for integration into the overall BIM model (Fig. 4
(c)).

The widths are again calculated, as averaged, sampled
distances from the axis to the corresponding region boundary.
This part of the algorithm ends with merging the two lists of
axes (exterior and interior walls) and their corresponding
attributes (width and height), thus preparing the data as input

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:18, No:11, 2024

426International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
iv

il
an

d
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

11
, 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

88
4.

pd
f

data for further algorithms that would reconstruct the walls as
BIM objects. The subsequent steps in the algorithm involve
extracting the necessary data for the reconstruction of façade
windows and internal walls.

D. Windows and Doors Data Extraction

To reconstruct the windows, the first step is to identify and

extract the point clusters that represent the surfaces of the
façades. This is accomplished by selecting the clusters that have
the closest projection to the previously determined 2D
boundaries of the exterior walls. By focusing on these clusters,
the algorithm effectively isolates the relevant points that are
associated with the façade surfaces.

Fig. 5 Windows data extraction: (a) extract façade plane clusters; (b) Delaunay triangulation mesh; (c) Extract windows faces and simplify
boundary

For each identified cluster of façade points, a Delaunay

triangulation is then performed [19]. This triangulation creates
a dense mesh over the solid portions of the walls, while areas
where the windows are located result in disproportionately
distorted mesh faces. These distortions serve as key indicators,
providing a basis for extracting the mesh faces that correspond
to window openings. The faces belonging to the wall opening
have significant bigger perimeter compared to the rest of the
faces in the triangulated wall meshes and this is used in the
algorithm to dispatch them. The algorithm then reconstructs the
window boundaries by applying certain thresholds and
constructing a bounding rectangle on the adjacent plane. The
dimensions of the rectangles, along with their distances to the
ground plane, are prepared as attribute data for windows size
and seal. These are attributed to their positions, represented by
a projected center point. To achieve a successful reconstruction
of the windows in the BIM model, it is essential to also extract
information about the adjoining wall axis for each window.
These data are identified and incorporated as an ID attribute,
encoding the relationship between the windows and their
corresponding walls. An analogous approach to that used for
windows is employed to retrieve and organize the data required
for the reconstruction of the doors in the model. The algorithm
is applied to the list of extracted interior wall axes, where a wall
ID attribute is added to each, along with the corresponding
center points and dimensions for the doors. This ensures that all
necessary information is accurately captured to facilitate the
precise placement and sizing of doors within the BIM model.
The information, retrieved with the algorithm (Fig. 7) at this
point, is sufficient to also reconstruct algorithmically the walls
and the openings as b-rep geometry (Fig. 6). To facilitate BIM
reconstruction, the primitive geometries, including lines and
points, along with their associated attribute data, are exported
in JSON format using the BearGIS library [20]. The data are
organized into three distinct files corresponding to walls,
windows, and doors, respectively. These files serve as input for
the subsequent algorithm, which is executed in Revit using
pyRevit [21].

IV. RECONSTRUCTING THE GEOMETRY AS BIM OBJECTS

A. Revit Workflow Overview

Autodesk Revit serves as the primary BIM authoring tool. It
is one of the most widely used BIM software applications
globally, recognized for its robust capabilities in architectural,
structural, and MEP design. Autodesk Revit offers a
comprehensive API that enables power users and external
application developers to create custom tools and integrate
them seamlessly into the Revit environment. This flexibility,
coupled with a large developer community and extensive
resources, facilitates the relatively straightforward creation of
add-ons and extensions tailored to specific project needs.

pyRevit functions as a Rapid Application Development
(RAD) environment for Autodesk Revit. It enables the rapid
development and integration of custom tools directly into the
Revit user interface, enhancing user experience and workflow
efficiency. pyRevit provides a library of pre-built input and
output UI components and other functionalities that streamline
the tool creation process, making it easier for developers to
build, test, and deploy new tools within Revit quickly.

Python is utilized as the primary programming language due
to its widespread popularity, flexibility, and ease of use. Known
for its simple and readable syntax, Python supports both object-
oriented and structured programming paradigms, making it
suitable for quick prototyping and iteration. Python’s versatility
and rapid development capabilities make it particularly well-
suited for developing tools and scripts that interface with Revit's
API and pyRevit.

To ensure seamless data exchange between the earlier steps
and the BIM authoring workflow, the language-independent
format JSON (JavaScript Object Notation) is used. JSON is an
open standard file format that employs human-readable text to
store and transmit data objects consisting of attribute-value
pairs and arrays. It effectively facilitates the transfer of complex
geometric and attribute data from the processing environment
to the BIM software.

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:18, No:11, 2024

427International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
iv

il
an

d
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

11
, 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

88
4.

pd
f

Fig. 6 Results from the algorithm: b-rep geometry

B. Scope of Work

The scope of this work encompasses the creation of several
key building elements within the Revit environment, including
walls, doors and windows.

Autodesk Revit employs a structured data organization and
classification system that is essential to understand for effective
model creation. In Revit, all elements are divided into various
categories, and within each category are "Families" that further
contain specific "Types." At the lowest level of this hierarchy
are the individual elements, also known as instances. Each
instance represents a unique occurrence of an element within
the model.

The creation process within Revit must adhere to this
hierarchical structure. It is also important to consider specific
requirements inherent to Revit’s data model, particularly the
dependency relationships between different elements. For
example, both doors and windows are classified as hosted
elements, meaning they must be placed within a wall and cannot
exist independently. This dependency dictates that the
workflow sequence begins with the creation of walls, which
must precede the placement of doors and windows.

To achieve the desired outcomes, the creation of each
building element follows a structured sequence of steps:
1) Browse for a JSON File: It begins by selecting the

appropriate JSON file that contains the geometry and
attribute data for the specific building element to be
created.

2) Read and Process JSON Data: The JSON data are then read
and processed to extract all relevant information, such as
dimensions, positions, and associated parameters.

3) Create Element Based on JSON Data: Using the extracted
data, the corresponding element—be it a wall, door, or
window—is created within the Revit environment,
adhering to Revit’s data hierarchy and organizational rules.

4) Assign Parameter Values: Finally, additional parameter
values, such as material properties, levels, and other
attributes, are assigned to the created element based on the
information contained in the JSON file.

C. Walls’ Reconstruction

The process of wall reconstruction begins with an
investigation of the Revit API methods available for generating
the specific building element [22]. This identifies the necessary
information required for wall creation, which, in turn, defines

the structure of the JSON file used to input data. There are
several methods for creating walls, each of which requires
different arguments. The chosen method for this workflow
utilizes the following parameters: the current Revit document
(Document), the wall's location curve (Curve), the associated
level (Level), and a Boolean for structural use (Structural).

To effectively use the Revit API for wall creation, the JSON
file must contain both initial and additional data. Initial Data
(Minimum Required for Wall Creation):
1) Document: refers to the currently opened Revit document

where the wall will be created.
2) Curve: represents the location curve for each wall, defined

by the centerline. The curve is determined by its start and
end point coordinates.

3) ElementId: represents the ID of the level on which the wall
is placed; typically, the standard ground level of the Revit
document is used.

4) Bool (Structural use): indicates whether the wall is
structural or non-structural; in this case, non-structural is
used.

Additional Data:
1) Wall Width: is determined by the Revit Wall Family Type.

For this tool, single-layer Basic Wall Types are used. If a
Wall Type with the required width does not exist in the
document, a new Wall Type is created.

2) Wall Height: is assigned once the wall has been created to
match the desired specifications.

3) Wall ID: is a unique identifier assigned to each created wall
to track the host walls for windows and doors.

The tool for wall creation follows a systematic sequence of
operations:
1) Browse JSON File: utilizes the built-in functionality of

pyRevit to select the appropriate JSON file containing the
wall data.

2) Read JSON Data: uses Python's JSON module to read and
parse the data from the selected JSON file.

3) Check Current Wall Types: verifies the existing wall types
in the current Revit model. If a wall type with the required
specifications does not exist, it creates a new wall type as
needed.

4) Create Walls and Set Parameters: executes the wall
creation process in Revit and sets the necessary parameter
values to align with the data extracted from the JSON file.

The data in the JSON file follow the structure shown in Fig.
7.

The algorithm goes through the following steps:
1) Browse JSON file using built-in pyRevit functionality.
2) Read JSON data using Python JSON module.
3) Check current Revit model Wall types and create new if

needed.
4) Creation of the walls and set desired parameter values to

match data.

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:18, No:11, 2024

428International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
iv

il
an

d
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

11
, 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

88
4.

pd
f

Fig. 7 JSON data structure: (a) walls; (b) windows and doors

D. Windows and Doors Reconstruction

The creation process for doors and windows in Revit follows
a similar logic, but multiple options exist depending on the
arguments used. The method selected for this purpose is
"NewFamilyInstance," which is versatile and applicable to
various element types. To ensure accurate placement and
compatibility, the method chosen uses specific parameters
tailored to the nature of door and window elements, including

Element Location, Element Family Type, Host Element, and
Structural Type

To create doors and windows effectively, the JSON file must
contain the following initial data:
1) XYZ: The precise location of the door or window, defined

by XYZ coordinates.
2) FamilySymbol: The specific Family Type to be used for

the door or window, as per Revit's organizational
hierarchy.

3) Element: The host wall where the door or window will be
placed.

4) Structural Type: Indication of whether the element is for
structural use, based on Revit's information hierarchy.

Additional data, such as width and height, are typically
governed by the Family Type in Revit. However, this tool uses
a workflow that assigns these dimensions at the instance level
rather than the Family Type level. This allows for more
flexibility and customization in the placement of each element.
Additional parameters include:
1) Width and Height: is assigned at the instance level to allow

customization.
2) Wall_ID: identifies the host wall for each door or window.
3) Sill: is the height of the window sill from the finished floor

(applicable to windows only).

Fig. 8 Reconstructed model in Revit

The algorithm goes through the following steps:
1) Get all walls,
2) Get pre-loaded window/door Family Type,
3) Browse JSON file using built-in pyRevit functionality,
4) Read JSON data using Python JSON module,
5) Creation of the window/door and set desired parameter

values to match data.
The tree scripts are run consecutively, thus creating the final

result – reconstructed walls, windows and doors as BIM
elements. Fig. 8 shows the generated model in Revit.

Additionally, the model is reconstructed in ArchiCAD (Fig.
9) to provide a comparative analysis of the results and explore
an alternative method for BIM generation. This process utilizes

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:18, No:11, 2024

429International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
iv

il
an

d
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

11
, 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

88
4.

pd
f

the Grasshopper-ArchiCAD live connection, which allows for
real-time data exchange between the two software platforms.
By employing ArchiCAD's native components within the
Grasshopper environment, the algorithm directly uses the
originally extracted primitives (lines and points) as input data,
with the associated attribute data serving as parameters for the
ArchiCAD components.

This approach leverages the powerful algorithmic
capabilities of Grasshopper for model creation, enabling a
streamlined workflow that does not require data export or
conversion into other formats, unlike the Revit-based method.
However, one significant limitation of this method is that it
necessitates running both Grasshopper and ArchiCAD
simultaneously, which can increase computational demand and
complicate the modeling process compared to the Revit
approach. Despite this disadvantage, the integration provides a

flexible and dynamic modeling environment that can be
beneficial in scenarios where real-time adjustments and
iterations are needed.

V. CONCLUSION AND FUTURE WORK

The proposed methodology demonstrates a streamlined
approach for automating the process of converting point cloud
data into BIM. Through a series of well-defined steps and tools,
the methodology simplifies complex tasks, reducing manual
effort and improving overall workflow efficiency. The results
of this research include a set of ready-to-use algorithms that can
significantly enhance the task of generating BIM models from
laser-scanned point clouds. These algorithms offer a practical
solution by automating, which can save considerable time and
resources in real-world applications.

Fig. 9 Reconstructed model in ArchiCAD

Moreover, the research provides solutions tailored to the two
most widely used BIM software platforms, Autodesk Revit and
ArchiCAD, ensuring that the developed methodology is
versatile and accessible to a broad range of users. By offering
an approach compatible with both software environments, the
methodology allows for flexibility and choice, making it
applicable to various project types and user preferences.

Future work in this area could involve more extensive testing
of the algorithms on multiple diverse point cloud datasets to
validate their robustness and adaptability across different
building types and scanning conditions. Additionally,
expanding the methodology to include the analysis and
reconstruction of additional BIM elements, such as slabs and
roofs, would further enhance its applicability and value. The
algorithms developed through this research could also serve as
a foundation for generating training data for neural networks,
potentially advancing the research.

ACKNOWLEDGMENT

This research was conducted as part of the scientific research
program at the "University of Architecture, Civil Engineering

and Geodesy," Sofia. The point cloud was provided by Mladen
Tsenov.

REFERENCES
[1] Ochmann, Sebastian & Vock, R. & Wessel, R. & Tamke, Martin & Klein,

Reinhard. (2014). Automatic generation of structural building
descriptions from 3D point cloud scans. GRAPP 2014 - Proceedings of
the 9th International Conference on Computer Graphics Theory and
Applications. 120-127.

[2] Ochmann, Sebastian & Vock, Richard & Wessel, Raoul & Klein,
Reinhard. (2015). Automatic Reconstruction of Parametric Building
Models from Indoor Point Clouds. Computers & Graphics. 54.
10.1016/j.cag.2015.07.008.

[3] Ochmann, Sebastian & Vock, Richard & Klein, Reinhard. (2019).
Automatic reconstruction of fully volumetric 3D building models from
oriented point clouds. ISPRS Journal of Photogrammetry and Remote
Sensing. 151. 251-262. 10.1016/j.isprsjprs.2019.03.017.

[4] Román, J. & Lerones, Pedro & Llamas, Jose & Zalama, Eduardo &
Gómez-García-Bermejo, Jaime. (2019). Towards the Automatic 3D
Parametrization of Non-Planar Surfaces from Point Clouds in HBIM
Applications. ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences. XLII-2/W15. 1023-
1030. 10.5194/isprs-archives-XLII-2-W15-1023-2019.

[5] Xiong, Xuehan & Adan, Antonio & Akinci, Burcu & Huber, Daniel.
(2013). Automatic Creation of Semantically Rich 3D Building Models
from Laser Scanner Data. Automation in Construction. 31. 325–337.

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:18, No:11, 2024

430International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
iv

il
an

d
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

11
, 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

88
4.

pd
f

10.1016/j.autcon.2012.10.006
[6] Okorn, B., Xiong, X., & Akinci, B. (2010). Toward Automated Modeling

of Floor Plans
[7] Stojanovic, Vladeta & Trapp, Matthias & Richter, Rico & Döllner,

Jürgen. (2018). Generation of Approximate 2D and 3D Floor Plans from
3D Point Clouds. 10.5220/0007247601770184.

[8] Anagnostopoulos, Ioannis & Pătrăucean, Viorica & Brilakis, Ioannis &
Vela, Patricio. (2016). Detection of Walls, Floors, and Ceilings in Point
Cloud Data. 2302-2311. 10.1061/9780784479827.229.

[9] Macher, Hélène, Tania Landes, and Pierre Grussenmeyer. 2017. "From
Point Clouds to Building Information Models: 3D Semi-Automatic
Reconstruction of Indoors of Existing Buildings" Applied Sciences 7, no.
10: 1030. https://doi.org/10.3390/app7101030

[10] Díaz Vilariño, Lucia & Verbree, Edward & Zlatanova, Sisi & Diakité,
Abdoulaye. (2017). Indoor Modelling from SLAM-Based Laser Scanner:
Door Detection to Envelope Reconstruction. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences. XLII-2/W7. 345-352. 10.5194/isprs-archives-
XLII-2-W7-345-2017.

[11] Bassier, Maarten & Mattheuwsen, Lukas & Vergauwen, Maarten. (2019).
BIM Reconstruction: Automated Procedural Modeling from Point Cloud
Data. ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences. XLII-2/W17. 53-60.
10.5194/isprs-archives-XLII-2-W17-53-2019.

[12] Bassier, Maarten & Vergauwen, Maarten. (2020). Topology
Reconstruction of BIM Wall Objects from Point Cloud Data. Remote
Sensing. 12. 1800. 10.3390/rs12111800.

[13] Petras Vestartas and Andrea Settimi, Cockroach: A Plug-in for Point
Cloud Post-Processing and Meshing in Rhino Environment, EPFL ENAC
ICC IBOIS, 2020, https://github.com/9and3/Cockroach.

[14] Qian-Yi Zhou and Jaesik Park and Vladlen Koltun, Modern Library for
{3D} Data Processing, arXiv:1801.09847, 2018 , https://github.com/isl-
org/Open3D/blob/main/README.md

[15] CGAL, Computational Geometry Algorithms Library,
https://www.cgal.org

[16] Zampogiannis, Konstantinos and Fermuller, Cornelia and Aloimonos,
Yiannis, cilantro: A Lean, Versatile, and Efficient Library for Point Cloud
Data Processing, Proceedings of the 26th ACM International Conference
on Multimedia, 2018

[17] Valero, Enrique & Adan, Antonio & Cerrada, Carlos. (2012). Automatic
Method for Building Indoor Boundary Models from Dense Point Clouds
Collected by Laser Scanners. Sensors (Basel, Switzerland). 12. 16099-
115. 10.3390/s121216099.

[18] https://github.com/MetaCityGenerator/MetaCityGenerator_GHCompone
nt

[19] Delaunay, B. (1934). Sur la sphère vide. Bulletin of the Academy of
Sciences of the USSR: Classe des sciences mathématiques et naturelles,
6, 793–800.

[20] https://github.com/nicoazel/BearGIS
[21] https://github.com/pyrevitlabs/pyRevit
[22] https://www.revitapidocs.com/2024/3ef7e31c-b41b-c8cc-2713-

8f098954613d.htm

Radul Shishkov has PhD degree in computational and parametric design
(2013-2018) in the department of “Interior and Architectural Design”, faculty
of “Architecture”, “University of Architecture, Civil Engineering and
Geodesy”, Sofia, Bulgaria. Master’s degree (2007-2012) in architecture from
“University of Architecture, Civil Engineering and Geodesy”, Sofia, Bulgaria.

He is currently Assistant Professor in the “University of Architecture, Civil
Engineering and Geodesy”, Sofia, Bulgaria and Managing Partner in “CAST
Studio”, Sofia, Bulgaria.

Asst.prof. dr. arch. Radul Shishkov is member of the “Chamber of Architets
in Bulgaria”

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:18, No:11, 2024

431International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
iv

il
an

d
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

11
, 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

88
4.

pd
f

