
 

 

 
Abstract—The landing phase of a UAV is very critical as there are 

many uncertainties in this phase, which can easily entail a hard landing 
or even a crash. In this paper, the estimation of relative distance and 
velocity to the ground, as one of the most important processes during 
the landing phase, is studied. Using accurate measurement sensors as 
an alternative approach can be very expensive for sensors like LIDAR, 
or with a limited operational range, for sensors like ultrasonic sensors. 
Additionally, absolute positioning systems like GPS or IMU cannot 
provide distance to the ground independently. The focus of this paper 
is to determine whether we can measure the relative distance and 
velocity of UAV and ground in the landing phase using just low-
resolution images taken by a monocular camera. The Lucas-Konda 
feature detection technique is employed to extract the most suitable 
feature in a series of images taken during the UAV landing. Two 
different approaches based on Extended Kalman Filters (EKF) have 
been proposed, and their performance in estimation of the relative 
distance and velocity are compared. The first approach uses the 
kinematics of the UAV as the process and the calculated optical flow 
as the measurement. On the other hand, the second approach uses the 
feature’s projection on the camera plane (pixel position) as the 
measurement while employing both the kinematics of the UAV and 
the dynamics of variation of projected point as the process to estimate 
both relative distance and relative velocity. To verify the results, a 
sequence of low-quality images taken by a camera that is moving on a 
specifically developed testbed has been used to compare the 
performance of the proposed algorithm. The case studies show that the 
quality of images results in considerable noise, which reduces the 
performance of the first approach. On the other hand, using the 
projected feature position is much less sensitive to the noise and 
estimates the distance and velocity with relatively high accuracy. This 
approach also can be used to predict the future projected feature 
position, which can drastically decrease the computational workload, 
as an important criterion for real-time applications. 

 
Keywords—Automatic landing, multirotor, nonlinear control, 

parameters estimation, optical flow. 

I. INTRODUCTION 

HE current trend to use fully automated UAVs in urban 
areas in applications like surveillance, delivery service, and 

air taxi requires to consider safety issues seriously, especially 
in failure scenarios. There is an increasing requirement for the 
reliability, safety, and fault tolerances of UAVs as any minor 
fault may have catastrophic results [1]. In these scenarios, it 
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may be required to have an emergency landing in an unprepared 
landing position while it is not accurately known. One of the 
key parameters which should be measured/estimated for a safe 
landing is the relative distance and velocity between the UAV 
and ground. In a general perspective, distance estimation can be 
looked at as a specific form of localization and positioning of 
the UAV which is generally performed using sensors like 
LIDAR, GPS, IMU, Ultrasonic, and camera. There are different 
estimation mechanisms for positioning and localization, each 
uses specific sensors and differs in terms of accuracy, 
operational range, reliability, cost, weight, power consumption, 
and computational burden. Some of these sensors used for UAV 
positioning in literature and their qualitative comparison are 
presented in Table I. Fusing GPS and vision information is a 
classical solution to Simultaneous Localization And Mapping 
(SLAM) during the flight [2] and using an ultrasonic sensor [3] 
is a common exercise in relative distance estimation during the 
landing. For example, [4] applied two LIDAR sensors to 
analyze the movement in a maritime application to reduce the 
dependency on the positioning system on GPS signals. 
Considering the weight and power limitations, the applicability 
of such methods is in doubt. Currently, vision sensors as 
powerful, lightweight, and accurate tools are used widely as a 
rich source of information [5] allowing the UAV to react to the 
actual scene [6].  

One of the applications of image sensors in the landing phase 
is landing site detection and navigating the UAV to the landing 
site. Some researchers used images through the categorization 
techniques [7] or feature detection techniques [8] to detect a 
suitable site and then employ sensors like IMU and GPS for the 
automatic landing of the UAV. However, landing on an 
unknown landing site or in GPS denied environments is a 
challenge that these researches cannot address. To tackle the 
reliance on GPS signals, image data were used in researches 
like [9] and [10] to estimate the relative position/attitude of the 
UAV to a known landing site, which is marked with pre-
determined features. Similarly, [11] fused the visual and inertial 
information obtained from the camera and IMU, using a 
Kalman filter, to estimate the relative velocity and position of 
the UAV and a ship to predict the touchdown point. However, 
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because of the reliance of these methods on known 
characteristics of the landing site, they are not suitable for 
failure scenarios in which landing on an unprepared or even 
unknown site may be required.  

Some other researchers used image sensors to analyze the 
physical condition of the site and its safety issues instead of 
estimating the relative position of the drone and the ground. In 
this category, some tried to reconstruct the area using image 
information to evaluate height maps [12], [13]. Having the 3D 

reconstructed map of the landing site can be used to analyze the 
suitability of the site for the landing of the UAV. However, 
because of the computational burden of these methods, they 
cannot be used for online estimation of relative distance and 
velocity. In some other researches, in this category, 
Convolutional Neural Network (CNN) is used by [14] to detect 
the landing site and avoid the congested landing areas. The 
focus of these researches is safety, and relative position and 
velocities are not their concern.  

 
TABLE I 

COMPARISON BETWEEN DIFFERENT SENSORS FOR DISTANCE ESTIMATION 

 Accuracy Range Reliability Cost Weight Power Computation Duration 

GPS A E A A E A A E 

Inertial Navigation System E E E X A A X P 

Pressure Altimeter P E E P P E E E 

Laser Range Finder E P E P P A E A 

Ultrasonic sensor E X A E E E E E 

Vision camera A A A E E A P E 

X: Very Poor, P: Poor, A: Average, E: Excellent 
 

The other application of image sensors during the landing 
phase is the guidance and control of the UAV. Landing control 
is a problem that is tackled by some researches using 
approaches like sliding mode control [15] or robust approaches 
[16], however controllers typically rely on relative height and 
velocity. To solve this problem some researchers [19]-[21] used 
optical flow as a measure of landing quality. The relative 
position and velocity between the UAV and ground can also be 
estimated by tracking these features in sequencing images. 
Using optical flow for UAVs’ guidance and control is a bio-
inspired approach, utilized by many researchers [22]-[24] in 
different phases of UAV operation. Optical flow can be 
interpreted as the distribution of apparent velocities of 
movement of brightness patterns in an image which is the result 
of the relative motion of objects and the viewer [17]. A 
sequence of the images taken by a monocular camera can be 
used to calculate the optical flow. The images of this sequence 
should be used through a feature detection algorithm like the 
Lukas-Kanade method to deter some features on the ground. 
The position of these features in the camera plane is used as the 
measurements to calculate the optical flow of the detected 
features. References [18] and [19] apply the optical flow 
method to provide a soft and smooth landing for a UAV while 
[20] examines optical flow to avoid ground during the cruise 
flight of UAVs. On the other hand, [3], [21] and [22] focused 
on the estimation of the position and velocity of a quadcopter 
in the landing phase.  

The problem of simultaneous height estimation and vertical 
flight control has been studied by [23]. Accordingly, an 
adaptive proportional feedback controller is examined, while its 
parameters were adjusted using the vertical distance estimates 
provided by a flow divergence estimator. A variation of the NDI 
method is proposed in [24] to deal with the nonlinearities of 
optical flow control in which the model parameters were 
estimated during flight. Despite the investigation of the control 
algorithm, there is no discussion or results about the optical 
flow estimation accuracy in this paper. Since the proposed 

controller is robust to uncertainties [25], [26], having a smooth 
landing does not necessarily mean that the system is identified 
properly. 

In this paper, the problem of estimation of distance and 
velocity of a quadcopter in the landing phase using the vision 
sensors is studied. To make the proposed suitable for scenarios 
that the height of the UAV is high, low-quality images have 
been used in the testbed. For the estimation process, two 
approaches have been developed. In the first approach, called 
Optic-Flow Based approach (OFBA), the optic flow equation 
has been considered as the measurement equation while the 
kinematics equations of the UAV have been considered as the 
process equation. In the second approach, called Feature-
Position Based approach (FPBA), the detected feature position 
in the camera plane has been considered as the measurement 
and both the optic-flow equation and the Kinematics equations 
of the UAV have been considered as the process equations. 
Both approaches use EKF for estimation while the first one 
estimates just distance and velocity while the second approach 
estimates pixel positions as well as the distance and the 
velocity.  

The presented formulation for the dynamics of UAV and 
optic flow includes all translational and rotational movements. 
However, considering that the landing phase is the main 
problem of this research, it is assumed in case studies that the 
angular rates of the UAV are negligible and the UAV just 
moves downward. A specific testbed has been developed to 
perform the experimental tests. The studies show that the first 
approach is always observable while in the second approach, in 
specific situations, the observability matrix is not full rank. The 
results also show that the second approach is much better than 
the first approach in terms of accuracy and sensitivity to the 
measurement noises. As the EKF can be employed to predict 
the future, the second approach enables us to have a prediction 
about the future feature position and so apply the image 
processing techniques to the neighborhood of that point. This 
prediction can be used to reduce the computational load or to 
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use more accurate feature detection techniques. 

II. ESTIMATION PROCESS AND FORMULATION  

A. Optical Flow Formulation 

In this section, the dynamic of the variation of the projection 
of the detected feature in the camera plane is presented. To 
formulate the optical flow, the schematic presented in Fig. 1 is 
used. The body frame attached to the UAV is presented by 
𝑂𝑋 𝑌 𝑍  where the camera is mounted in its z-direction. 
Assuming that the position of the detected feature in 𝑂𝑋 𝑌 𝑍  

is 𝑃 𝑋 𝑌 𝑍  (superscript B indicates the body coordinate 

system which) then its position in the camera plane (�⃗�
𝑥 𝑦 𝑓 ) can be calculated as:  

 

𝑃 �⃗�           (1) 

 
where f is the focal length of the camera. For brevity, this 
position will be called pixel position in the following. The time 
derivative of (1) can be written as: 
 

𝑃
⃗ ⃗ ⃗ ⃗

         (2) 

 
Considering the kinematic equations and assuming that the 

velocity of the quadcopter stated in the body frame, the velocity 
of a fixed point on the inertia frame can be stated in the body 
coordinate system as: 

 

 

Fig. 1 Projection of the detected feature in the camera plane 
 

𝑃 𝑟 �⃗� 𝑃         (3) 
 

Replacing �⃗� 𝜔 𝜔 𝜔  and 𝑟 𝑉 𝑉 𝑉  in 
(3), and using (2), the optic flow equations can be presented as: 

 

𝑥 𝜔 𝑓 𝜔 𝑦 𝜔 𝑥𝑦 𝜔 𝑥   (4) 

 

𝑦 𝜔 𝑥 𝜔 𝑓     (5) 

 
This equation can be rearranged in the matrix form of: 

𝑥
𝑦

𝑓 0 𝑥
0 𝑓 𝑦

𝑉
𝑉
𝑉

𝑓 𝑦

𝑓 𝑥

𝜔
𝜔
𝜔

 

(6) 
 
For the UAV in the landing phase, it is assumed that �⃗� 0 

and 𝑉 𝑉 0 in this case the dynamic is simplified as: 
 

𝑥
𝑦            (7) 

B. UAV Dynamics Formulation 

To consider the dynamics of the UAV in the estimation 
process the kinematic equations can be used to relate the 
position, velocity, and acceleration of the UAV. 

 

𝑃

𝑉

0 𝐼
0 0

𝑃
𝑉

0
 �⃗�

      (8) 

 

while the velocity term (𝑟 ) appears in (6) is in 𝑂𝑋 𝑌 𝑍  the 
position and velocity in (8) are in the inertia coordinate system. 
So, it is necessary to transform the position from the body frame 
to the inertia frame. To transform the position and velocity into 
the body frame, the Euler angles can be used through a 
convenient transformation matrix 𝑇  which is in the form of: 

 
𝑻  

𝑐 𝜃 𝑐 𝜓 𝑐 𝜃 𝑠 𝜓 𝑠 𝜃
𝑠 𝜙 𝑠 𝜃 𝑐 𝜓   𝑐 𝜙 𝑠 𝜓 𝑠 𝜙 𝑠 𝜃 𝑠 𝜓   𝑐 𝜙 𝑐  𝜓 𝑠 𝜙 𝑐 𝜃
𝑐 𝜙 𝑠 𝜃 𝑐 𝜓   𝑠 𝜙 𝑠 𝜓 𝑐 𝜙 𝑠 𝜃 𝑠 𝜓   𝑠 𝜙 𝑐 𝜓 𝑐 𝜙 𝑐 𝜃

 

(9) 
 
where, 𝜙, 𝜃, and 𝜓 are the Euler angles also 𝑐 𝑥  and 𝑠 𝑥  stand 
for 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑥  and 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑥  respectively. Without loss of 
generality, the Euler angles can be considered as small values 
in the landing phase (𝜑 𝜖 , 𝜃 𝜖  and 𝜓 𝜖 ) so ignoring 
the second-order terms, the transformation matrix can be 
presented as: 

 

𝑻
1 𝜖 𝜖

  𝜖 1 𝜖
𝜖   𝜖 1

 

C. Estimation Formulation Approaches 

Two different estimation approaches have been applied in 
this research. In the first approach, (7) is used as the process 
equation to estimate �⃗� 𝑍 𝑉   as the state vector. In this 
approach, the pixel position ( 𝑥 𝑦 ) is used to calculate the 
velocity of the pixel ( 𝑥 𝑦 ). To calculate the velocity, 
variation of the position of the pixel position in the sequence of 
images, taken with a specific imaging rate, is used. 

 

𝑥            𝑦       (10) 

 
where, 𝑥 𝑡  and 𝑦 𝑡  are the measurements of pixel positions 
in consecutive images and 𝑇  is the time difference between the 
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images. Based on (7) the measurement equation can be written: 
 

           (11) 

 
For a UAV with full rotational and translational movements, 

(6) should be used instead of (11), which makes the 
measurement equation more nonlinear. 

In the second approach, the pixel position is also added to the 
state vector (�⃗�) to reduce the effects of image noises or low 
image qualities. So, in this approach, the state vector is �⃗�
𝑥 𝑦 𝑍 𝑉   and (4), (5), and (7) are considered as the process 

equations. As the pixel position is calculated using the Lukas-
Kanade algorithm, the measurement equation can be written as: 

 

𝑧 1 0 0 0
0 1 0 0

�⃗�        (12) 

 
This equation is completely linear and for a UAV with full 

rotational and translational movements, it will not change. 
Equations (10)-(12) show that vertical distance and velocity can 
be estimated using only the measurement of optical flow if the 
UAV angular velocity vector is kept to zero. It enables the UAV 
to measure its distance and velocity from the ground without 
the need for any other measurement. 

D. Feature Detection Algorithm 

To detect the feature the Lukas-Kanade algorithm has been 
employed. Lucas-Kanade Feature Tracker is a widely used 
feature tracking algorithm in computer vision because of its low 
computational cost and low iteration time. The following 
assumptions are considered in feature detection procedure:  
1- The images contain textured objects with smooth changes  
2- The tracked features are relatively close to each other 

between two consecutive images.  
The algorithm tracks the given feature between any two 

consecutive images by monitoring the pixel intensity changes 
in the neighborhood of the feature in the first image. So, the 
feature tracker needs to calculate the pixel intensity at the 
location of a feature coordinates (𝑥, 𝑦) in the first image. It 
should also calculate the rate of change of pixel intensity 
relative to both x and y directions (𝐼 , 𝐼 ). Then the tracker 
calculates the pixel intensity at the same location (𝑥, 𝑦) in the 
second image. If the pixel intensity difference between two 
images, is (𝑥, 𝑦), then, 

 
𝐼 𝑥, 𝑦   𝐼 𝑥, 𝑦  . 𝑢  𝐼 𝑥, 𝑦  . 𝑣      (13) 

 
where u and v are the movements of the feature in x-direction 
and y-direction between two images. Because a single-pixel 
cannot hold enough information N neighbors of the pixel are 
also used. Equation (13) for n neighbors can be written as: 

 
𝐼 𝑥 , 𝑦   𝐼 𝑥 , 𝑦  . 𝑢  𝐼 𝑥 , 𝑦  . 𝑣 
𝐼 𝑥 , 𝑦   𝐼 𝑥 , 𝑦  . 𝑢  𝐼 𝑥 , 𝑦  . 𝑣  (14) 
𝐼 𝑥 , 𝑦   𝐼 𝑥 , 𝑦  . 𝑢  𝐼 𝑥 , 𝑦  . 𝑣 
𝐼 𝑥 , 𝑦   𝐼 𝑥 , 𝑦  . 𝑢  𝐼 𝑥 , 𝑦  . 𝑣 

 

Equation (14) can be written as matrix form: 
 

Φ

⎣
⎢
⎢
⎢
⎡

𝐼 𝑥 , 𝑦 𝐼 𝑥 , 𝑦
𝐼 𝑥 , 𝑦 𝐼 𝑥 , 𝑦

⁞ ⁞
𝐼 𝑥 , 𝑦 𝐼 𝑥 , 𝑦  

⎦
⎥
⎥
⎥
⎤
 𝛽  

𝑢
𝑣  𝑈  

⎣
⎢
⎢
⎡

𝐼 𝑥 , 𝑦
𝐼 𝑥 , 𝑦

⁞
𝐼 𝑥 , 𝑦 ⎦

⎥
⎥
⎤
 (15) 

        
Then this system of equations (15) with n equations and two 

unknowns can be solved using conventional algorithms like 
Least Square (LS) method as: 

 

𝛽  Φ Φ Φ �⃗�         (16) 

E. Extended Kalman Filter 

To overcome the nonlinearity of the measurement equation 
in the first approach and the nonlinearity of the process equation 
in the second approach EKF is used in this research to estimate 
the states of the system [27]. In this section, the EKF process 
and the related formulation are presented first and then it is 
specifically applied to the developed equations in the previous 
sections. We assume a process governed by nonlinear stochastic 
difference equations of:  

 
�⃗� 𝑓 �⃗� , �⃗� , 𝑤         (17) 

 
and with the measurements: 

 
𝑧 ℎ 𝑥 , 𝑣           (18) 

 
where, �⃗�  is the state vector, �⃗�  is the control vector, 𝑤  and 𝑣  
are measurement process and measurement noises respectively. 
They are assumed to be independent, white noise, and with 
normal probability distributions. 

 
𝑝 𝑤 𝑁 0, 𝑄 ,    𝑝 𝑣 𝑁 0, 𝑅      (19) 

 
where Q is the process noise covariance matrix and R is the 
measurement noise covariance matrix. Linearizing (17) and 
(18) concerning states and measurements results in: 

 
�⃗�  𝑥 𝐴 �⃗� 𝑥 𝑊�⃗�      (20) 

 
𝑧 �̃� 𝐻 �⃗� 𝑥 𝑉�⃗�        (21) 

 
In these equations 𝑥  and �̃�  are the approximate state and 

measurement vectors from (17) and (18) and 𝑥  is an a 
posteriori estimate of the state at step k. The matrices A, W, H, 
and V are Jacobian of f and h. The EKF process is an iterative 
process where each step begins with receiving a new 
measurement and has the following steps: 
Step1. Project the state ahead using (20). 
Step2. Project the error covariance ahead using: 

 
𝑃 𝐴 𝑃 𝐴 𝑊 𝑄 𝑊        (22) 

 
Step3. Compute the Kalman gain using 

 
𝐾 𝑃 𝐻 𝐻 𝑃 𝐻 𝑉 𝑅 𝑉       (23) 
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Step4. Update estimate with measurement 𝑧  
 

𝑥 𝑥 𝐾 𝑧 ℎ 𝑥 , 0        (24) 
 

Step5. Update the error covariance 
 

𝑃 𝐼 𝐾 𝐻 𝑃         (25) 
 
In the first approach, the state vector is �⃗� 𝑍 𝑉   and 

measurement vector is 𝑧  so the Jacobian matrices in this 

case are: 
 

𝐴 0 1
0 0

        𝐵 0
1

       𝐻     (26) 

 
The observability matrix for the states in this approach is: 
 

𝑀
0

         (27) 

 
This equation shows that the observability matrix is always 

of rank 2.  
In the second approach, �⃗� 𝑥 𝑦 𝑍 𝑉  and measurement 

vector is 𝑧 𝑥 𝑦 . To use (7), the Jacobian matrices can be 
derived as:  

 

𝐴

⎣
⎢
⎢
⎢
⎡ 0

0

0 0 0 1
0 0 0 0 ⎦

⎥
⎥
⎥
⎤

        𝐵

0
0
0
1

  

 𝐻 1 0 0 0
0 1 0 0

        (28) 

 
To analyze the observability of this approach the matrices A 

and H can be rewritten as: 
 

𝐴 𝑝𝑰 𝑢𝑣
𝑶 𝑪

              𝐻 𝑰 𝑶      (29) 

 
where 𝑰 𝐼  and 𝑶 0  and 𝑪 0 1 0 0  

 

𝑝           𝜉 𝑥 𝑦        𝜂       (30) 

 
Using these definitions, the observability matrix in this case 

is: 
 

𝑀

⎣
⎢
⎢
⎡

𝑰 𝑶
𝑝𝑰 𝜉𝜂

𝑝 𝑰 𝑝𝑰 𝑪 𝜉𝜂
𝑝 𝑰 𝑝𝑰 𝑪 𝜉𝜂 𝑪 𝑝 𝑰𝜉𝜂 ⎦

⎥
⎥
⎤
      (31) 

 
Studying the two first columns of (31) this system is always 

observable if: 1, 𝑥 𝑦, 𝑉 0 and 𝑍 0. 

Equations (26) and (27) will be implemented in the next 
section to a testbed to verify the proposed algorithm and 
compare the performance of the two approaches. 

III. CASE STUDIES 

To analyze the two approaches presented in the previous 
section, a specific testbed has been designed as presented in Fig. 
2. The testbed uses an Arduino board to convert the desired 
trajectory to the appropriate commands and then used a CNC 
shield to derive the stepper motor to accurately move the 
imaging mechanism (including a Raspberry pi board and its 
camera) in the imaging direction. A test has been defined with 
parameters presented in Table II.  

 

 

Fig. 2 Test Facility for Accurate Positioning of Camera 
 

 

Fig. 3 Measured feature positions and related optical flow 
 

TABLE II 
PARAMETERS OF THE MODEL 

Parameter Symbol Unit Value 

Initial distance 𝑑  𝑚 2.04 

Final distance 𝑑  m 0.5 

Initial velocity 𝑉  𝑚/𝑠 0.117 

Final velocity 𝑉  𝑚/𝑠 0.167 

Feature distance 𝑋  m 0.2 

Camera focal length 𝑓 mm 0.304 

Imaging sampling time 𝑇  1/𝑠 1/40 

Image resolution --- pixel 384*288 

 

In Fig. 3 the position of the feature measured by the camera 
is presented by the green dashed curve and compared to its real 
value (solid thin black curve). It can be seen that the 
measurements follow the real values. However, the time 
derivative of the measured feature points (red dashed curve), 
which appears in (10) and (11), makes the calculated optic flow 
very noisy. These measurements have been used in both 

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:17, No:1, 2023 

32International Scholarly and Scientific Research & Innovation 17(1) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

1,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

91
9.

pd
f



 

approaches, to study their performance in the estimation of 
vertical distance and velocity. The filter parameters are 
presented in Table III.  

 
TABLE III 

FILTER PARAMETERS 

Parameter Symbol Unit Value 

Initial covariance 𝑃  -- 100 

Process noise 𝜔  -- 0.00001 

Measurement noise 𝑣  -- 0.05 

Init. distance estimation 𝑑  𝑚 3.0 

Init. velocity estimation 𝑣  𝑚/𝑠 0.1 

Init. pix pos. estimation 𝑥  m  

 

 

Fig. 4 Comparison of distance and velocity with their estimated 
values for the first approach 

 

 

(a) 
 

 

(b) 

Fig. 5 Comparison of (a) estimation error and (b) real, measured, and 
estimated optical flows (first approach) 

 
The results of applying the first approach to the measured 

data are presented in Fig. 4. In this figure, the solid lines are for 
estimated values while the dashed lines are for real values. 
Comparing the distances, presented on the left axis of the image 
shows that there is about 50 cm distance error after 8 seconds 
of estimation. Comparing the symbolled lines, it can be seen 

also that there is about 10 cm/sec velocity estimation error. 
However, Fig. 5 (a) shows that the estimation of optical flow is 
close to its real value with less than 5% error after 7 seconds. 
Fig. 5 (b) shows that although the estimated distance and 
velocity have considerable errors, their ratio (as optical flow) is 
relatively accurate. So, this approach can be suitable for 
applications like optical flow control (for example [24]), but if 
the vertical distance and velocity values are required, this 
approach is not suitable.  

To estimate the vertical distance and velocity instead of their 
ratio, the second estimation approach is proposed. In the second 
approach, the camera's feature position is applied instead of the 
optical flow. The estimated distance and velocity are presented 
in Fig. 6. It can be seen that using the pixel position as the 
measurement parameter increases the distance and velocity 
estimations’ accuracy greatly such that the final distance error 
is less than 10 cm and the final velocity error is less than 0.3 
cm/s. The estimated pixel position is also compared with its real 
and measured values and it can be seen that the noises which 
are resulted from the low image qualities are removed and its 
real values are tracked accurately. The comparison between 
real, measured, and estimated pixel positions presented in Fig. 
7 shows that the estimated pixel position is in accordance with 
its real value. Fig. 8 (b) shows that the resulting optical flow is 
accurate with a final error of less than 2% error which makes 
this approach suitable for applications that use optical flow 
control as the guidance strategy. 

Fig. 9 presents the vertical velocity estimation using different 
approaches. Optical flow measurement and the pixel position 
measurement have been compared with the real velocity. 
Accordingly, pixel position measurement has better 
performance.  

 

 

Fig. 6 Comparison of distance and velocity with their estimated 
values for the second approach 

 

 

Fig. 7 Comparison of estimated pixel position with its measured, and 
real values for the second approach 
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(a) 
 

 

(b) 

Fig. 8 Comparison of real, measured, and estimated optical flows and 
estimation error (second approach) 

 

  

(a) 
 

 

(b) 

Fig. 9 Comparison of different approaches in the estimation of 
vertical velocity 

IV. CONCLUSION 

The main focus of this paper was to find how we can use 
image data to estimate the distance and velocity of a UAV 
during its landing. Our formulations showed that these 

parameters can be estimated generally by fusion of the camera 
and IMU data. However, in the landing phase, assuming low 
lateral movements and rotations, the image data are enough for 
the estimation of the relative distance and velocity to the 
ground. Two formulations have been proposed to estimate the 
states of the system (distance and velocity). The first one 
converts the detected feature position measurements into the 
optical flow and uses it as the measurement. While the other 
algorithm uses the feature position directly to estimate the states 
of the system. A testbed is designed and implemented to 
perform the tests with appropriate measurements of the states 
of the system. The evaluations show that: 
● Theoretically, it is possible to estimate both the distance 

and velocity of UAV using only image data in the landing 
phase. 

● The measurement noise is the main challenge for the 
estimation process when using optical flow to estimate the 
relative distance and velocity of the UAV, especially when 
the quality of the images is low. 

● Using optical flow as the measured parameter makes the 
optical flow smoothed which is suitable for control optical 
flow control. However, the estimations of vertical distance 
and velocity are erroneous with respect to the other 
approach. 

● Using pixel positions as the measured parameters requires 
some more calculations but estimations of vertical distance 
and velocity and optical flow are all more accurate with 
respect to the first approach. 

● The second approach provides a good estimation of feature 
position. So, this approach can be used to predict the future 
points of the feature position.  

● In summary, it is preferable to use feature positions as the 
measurement as it provides more accurate results and it 
also can be used for decreasing the computational burden 
by providing a prediction about the future point of the pixel 
position. 

For further researches, it is planned to improve the 
algorithms to include all translational and rotational movements 
of the camera. Application of the algorithms on a real UAV and 
analyzing the algorithms is another interesting work to 
determine the applicability of developed algorithms in real 
scenarios. 
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