**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31108

##### An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

**Authors:**
Alia Alghosoun,
Nabil El Moçayd,
Mohammed Seaid

**Abstract:**

**Keywords:**
Optimal Control,
Data Assimilation,
shallow water equations,
ensemble Kalman Filter,
topography
reconstruction

**References:**

[1] H. Abida. Identification of compound channel flow parameters. Journal of Hydrology and Hydromechanics, 57:172–181, 2009.

[2] S. Barth´el´emy, S. Ricci, O. Pannekoucke, O. Thual, and P. Malaterre. Emulation of an Ensemble Kalman Filter algorithm on a flood wave propagation model. Hydrology and Earth System Sciences Discussions, 10:6963–7001, 2013.

[3] F. Benkhaldoun, S. Sari, and M. Seaid. A flux-limiter method for dam-break flows over erodible sediment beds. Applied Mathematical Modelling, 36(10):4847–4861, 2012.

[4] F. Benkhaldoun and M. Seaid. A simple finite volume method for the shallow water equations. J. Comp. Applied Math, 234:58–72, 2010.

[5] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Birkh¨auser, Basel, 2004.

[6] W. Cheng and G. Liu. Analysis of non-linear channel friction inverse problem. Frontiers of Architecture and Civil engineering in China, 2:205–210, 2007.

[7] G. Evensen. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53(4):343–367, 2003.

[8] M. Le Gal, D. Violeau, R. Ata, and X. Wang. Shallow water numerical models for the 1947 gisborne and 2011 tohoku-oki tsunamis with kinematic seismic generation. Coastal Engineering, 139:1–15, 2018.

[9] P. Garcia-Navarro, A. Fras, and I. Villanueva. Dam-break flow simulation: some results for one-dimensional models of real cases. Journal of Hydrology, 216(3-4):227–247, 1999.

[10] C. Heining and N. Askel. Bottom reconstruction in thin-film flow over topography: Steady solution and linear stability. Physics and Fluids, 21:321–331, 2009.

[11] R. Hilldale and D. Raff. Assessing the ability of airborne liDAR to map river bathymetry. Earth Surf.Process, 33:773–783, 2008.

[12] A. Humberto, E. Schubert, and F. Sanders. Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of baldwin hills, california. Advances in Water Resources, 32(8):1323–1335, 2009.

[13] E. LeMeur, O. Gagliardini, T. Zwinger, and J. Ruokolainen. Glacier flow modelling: A comparison of the shallow ice approximation and the full-stokes solution. Comptes Rendus Physique, 5:709–722, 2004.

[14] F. Lu, M. Morzfeld, X. Tu, and A. Chorin. Limitations of Polynomial Chaos Expansions in the bayesian solution of inverse problems. Journal of Computational Physics, 282:138–147, 2015.

[15] S. Mart´ınez-Aranda, J. Murillo, and P. Garc´ıa-Navarro. A 1d numerical model for the simulation of unsteady and highly erosive flows in rivers. Computers & Fluids, 181:8–34, 2019.

[16] G. Michael and P. Malanotte-Rizzoli. Data Assimilation in metrology and oceanography. Advances in Geophysics, 33:141–266, 1991.

[17] N. El Moc¸ayd. La d´ecomposition en polynˆome du chaos pour l’am´elioration de l’assimilation de donn´ees ensembliste en hydraulique fluviale. PhD thesis, 2017.

[18] H. Nhuyen and J. Fenton. Identification of roughness in open channels. Advances in Hydro-science and engineering, 3:111–119, 2004.

[19] H. Oubanas, I. Gejadze, M. Pierre-Olivier, and M. Franck. River discharge estimation from synthetic SWOT-type observations using variational Data Assimilation and the full Saint-Venant hydraulic model. Journal of Hydrology, 559:638–647, 2018.

[20] R. Ramesh, B. Datta, S. Bhallamudi, and A. Narayana. Optimal estimation of roughness in open-channel flows. Journal of hydraulic engineering, 126:3–13, 2000.

[21] P. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43:357–372, 1981.

[22] H. Roux and D. Dartus. Sensitivity analysis and predictive uncertainty using inudation observations for parameter estimation in open-channel inverse problem. J. Hydraul.Eng, 9:134–541, 2008.

[23] M. Seller. Substrate design of reconstruction from free surface data for thin film flows. Phys. Fluids, 7:206–217, 2016.

[24] J. Simon, J. Jeffrey, and K. Uhlmann. New extension of the Kalman Filter to nonlinear systems. In Ivan Kadar, editor, Signal Processing, Sensor Fusion, and Target Recognition VI, volume 3068, pages 182 – 193. International Society for Optics and Photonics, SPIE, 1997.

[25] O. Soucek and Z. Martince. Iterative improvement of the shallow-ice approximation. Journal of Galciology, 54:812–822, 2008.

[26] Y. Spitz, J. Moisan, M. Abbott, and J. Richman. Data Assimilation and a pelagic ecosystem model: parameterization using time series observations. Journal of Marine Systems, 16(1):51–68, 1998.

[27] J. Stoker. Water waves. Interscience Publishers, Inc, New York, 1986.

[28] C. Vreugdenhil. Numerical Method for Shallow Water Flow. Kluwer Academic, Dordsecht, 1994.

[29] R. Westaway, S. Lane, and D. Hicks. The development of an automated correction procedure for digital photogrammetry for the study of wide, shallow, gravel-bed rivers. Earth surfaces processes and land forms, 25:209–225, 2000.