Search results for: magnetic equivalent circuit
1132 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids
Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash
Abstract:
The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.Keywords: Ferroconvection, throughflow, temperature dependent viscosity, magnetic field dependent viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11471131 Target and Equalizer Design for Perpendicular Heat-Assisted Magnetic Recording
Authors: P. Tueku, P. Supnithi, R. Wongsathan
Abstract:
Heat-Assisted Magnetic Recording (HAMR) is one of the leading technologies identified to enable areal density beyond 1 Tb/in2 of magnetic recording systems. A key challenge to HAMR designing is accuracy of positioning, timing of the firing laser, power of the laser, thermo-magnetic head, head-disk interface and cooling system. We study the effect of HAMR parameters on transition center and transition width. The HAMR is model using Thermal Williams-Comstock (TWC) and microtrack model. The target and equalizer are designed by the minimum mean square error (MMSE). The result shows that the unit energy constraint outperforms other constraints.
Keywords: Heat-Assisted Magnetic Recording, Thermal Williams-Comstock equation, Microtrack model, Equalizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18841130 Flow Measurement Using Magnetic Meters in Large Underground Cooling Water Pipelines
Authors: Humanyun Zahir, Irtsam Ghazi
Abstract:
This paper outlines the basic installation and operation of magnetic inductive flow velocity sensors on large underground cooling water pipelines. Research on the effects of cathodic protection as well as into other factors that might influence the overall performance of the meter is presented in this paper. The experiments were carried out on an immersion type magnetic meter specially used for flow measurement of cooling water pipeline. An attempt has been made in this paper to outline guidelines that can ensure accurate measurement related to immersion type magnetic meters on underground pipelines.
Keywords: Magnetic Induction, Flow meter, Faradays law, Immersion, Cathodic protection, Anode, Cathode. Flange, Grounding, Plant information management system, Electrodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26771129 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer
Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu
Abstract:
Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power Field Effect Transistor (FET) was was small. The power efficiencies were 0.44-0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.
Keywords: E-textile, flexible coils, flexible antennas, Litz wire, wireless power transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881128 Transient Voltage Distribution on the Single Phase Transmission Line under Short Circuit Fault Effect
Authors: A. Kojah, A. Nacaroğlu
Abstract:
Single phase transmission lines are used to transfer data or energy between two users. Transient conditions such as switching operations and short circuit faults cause the generation of the fluctuation on the waveform to be transmitted. Spatial voltage distribution on the single phase transmission line may change owing to the position and duration of the short circuit fault in the system. In this paper, the state space representation of the single phase transmission line for short circuit fault and for various types of terminations is given. Since the transmission line is modeled in time domain using distributed parametric elements, the mathematical representation of the event is given in state space (time domain) differential equation form. It also makes easy to solve the problem because of the time and space dependent characteristics of the voltage variations on the distributed parametrically modeled transmission line.
Keywords: Energy transmission, transient effects, transmission line, transient voltage, RLC short circuit, single phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11681127 Modeling and Simulation of Two-Phase Interleaved Boost Converter Using Open-Source Software Scilab/Xcos
Authors: Yin Yin Phyo, Tun Lin Naing
Abstract:
This paper investigated the simulation of two-phase interleaved boost converter (IBC) with free and open-source software Scilab/Xcos. By using interleaved method, it can reduce current stress on components, components size, input current ripple and output voltage ripple. The required mathematical model is obtained from the equivalent circuit of its different four modes of operation for simulation. The equivalent circuits are considered in continuous conduction mode (CCM). The average values of the system variables are derived from the state-space equation to find the equilibrium point. Scilab is now becoming more and more popular among students, engineers and scientists because it is open-source software and free of charge. It gives a great convenience because it has powerful computation and simulation function. The waveforms of output voltage, input current and inductors current are obtained by using Scilab/Xcos.
Keywords: Two-phase boost converter, continuous conduction mode, free and open-source, interleaved method, dynamic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9441126 Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach
Authors: Gilberto Gonzalez-A, Dunia Nuñez-P
Abstract:
Bond graph models of an electrical transformer including the nonlinear saturation are presented. The transformer using electrical and magnetic circuits are modelled. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two windings using the properties of a bond graph. The equivalence between electrical and magnetic variables is given. The modelling and analysis using this methodology to three phase power transformers can be extended.Keywords: Bond graph, electrical transformer, magnetic circuits, nonlinear saturation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45821125 Bridgeless Boost Power Factor Correction Rectifier with Hold-Up Time Extension Circuit
Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Yuan-Jhen Siao
Abstract:
A bridgeless boost (BLB) power factor correction (PFC) rectifier with hold-up time extension circuit is proposed in this paper. A full bridge rectifier is widely used in the front end of the ac/dc converter. Since the shortcomings of the full bridge rectifier, the bridgeless rectifier is developed. A BLB rectifier topology is utilized with the hold-up time extension circuit. Unlike the traditional hold-up time extension circuit, the proposed extension scheme uses fewer active switches to achieve a longer hold-up time. Simulation results are presented to verify the converter performance.Keywords: Bridgeless boost, boost converter, power factor correction, hold-up time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15161124 A Processor with Dynamically Reconfigurable Circuit for Floating-Point Arithmetic
Authors: Yukinari Minagi , Akinori Kanasugi
Abstract:
This paper describes about dynamic reconfiguration to miniaturize arithmetic circuits in general-purpose processor. Dynamic reconfiguration is a technique to realize required functions by changing hardware construction during operation. The proposed arithmetic circuit performs floating-point arithmetic which is frequently used in science and technology. The data format is floating-point based on IEEE754. The proposed circuit is designed using VHDL, and verified the correct operation by simulations and experiments.Keywords: dynamic reconfiguration, floating-point arithmetic, double precision, FPGA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181123 Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys
Authors: M. Nazmunnahar, J. J. Del Val, A. Vimmrova, J. González
Abstract:
We report the microstructural and magnetic properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 ribbon Heusler alloys. Experimental results were obtained by differential scanning calorymetry, X-ray diffraction and vibrating sample magnetometry techniques. The Ni-Mn-Sn system undergoes a martensitic structural transformation in a wide temperature range. For example, for Ni50Mn39Sn11 the start and finish temperatures of the martensitic and austenite phase transformation for ribbon alloy were Ms=336K, Mf=328K, As=335K and Af=343K whereas no structural transformation is observed for Ni50Mn36Sn14 alloys. Magnetic measurements show the typical ferromagnetic behavior with Curie temperature 207 K at low applied field of 50 Oe. The complex behavior exhibited by these Heusler alloys should be ascribed to the strong coupling between magnetism and structure, being their magnetic behavior determined by the distance between Mn atoms.Keywords: Structural transformation, as-cast ribbon, Heusler alloys, Magnetic properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26051122 Power Frequency Magnetic Field Survey in Indoor Power Distribution Substation in Egypt
Authors: Ahmed Hossam_ ElDin, Ahmed Farag, Ibrahim Madi., Hanaa Karawia
Abstract:
In our modern society electricity is vital to our health, safety, comfort and well-being. While our daily use of electricity is often taken for granted, public concern has arisen about potential adverse health effects from electric and magnetic – electromagnetic – fields (EMFs) produced by our use of electricity. This paper aims to compare between the measured magnetic field values and the simulated models for the indoor medium to low voltage (MV/LV) distribution substations. To calculate the magnetic flux density in the substations, interactive software SUBCALC is used which is based on closed form solution of the Biot-Savart law with 3D conductor model. The comparison between the measured values and the simulated models was acceptable. However there were some discrepancies, as expected, may be due to the current variation during measurements.Keywords: Distribution substation, magnetic field, measurement, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22991121 Magnetic Properties and Cytotoxicity of Ga-Mn Magnetic Ferrites Synthesized by the Citrate Sol-Gel Method
Authors: Javier Sánchez, Laura Elena De León Prado, Dora Alicia Cortés Hernández
Abstract:
Magnetic spinel ferrites are materials that possess size, magnetic properties and heating ability adequate for their potential use in biomedical applications. The Mn0.5Ga0.5Fe2O4 magnetic nanoparticles (MNPs) were synthesized by sol-gel method using citric acid as chelating agent of metallic precursors. The synthesized samples were identified by X-Ray Diffraction (XRD) as an inverse spinel structure with no secondary phases. Saturation magnetization (Ms) of crystalline powders was 45.9 emu/g, which was higher than those corresponding to GaFe2O4 (14.2 emu/g) and MnFe2O4 (40.2 emu/g) synthesized under similar conditions, while the coercivity field (Hc) was 27.9 Oe. The average particle size was 18 ± 7 nm. The heating ability of the MNPs was enough to increase the surrounding temperature up to 43.5 °C in 7 min when a quantity of 4.5 mg of MNPs per mL of liquid medium was tested. Cytotoxic effect (hemolysis assay) of MNPs was determined and the results showed hemolytic values below 1% in all tested cases. According to the results obtained, these synthesized nanoparticles can be potentially used as thermoseeds for hyperthermia therapy.
Keywords: Cytotoxicity, heating ability, manganese-gallium ferrite, magnetic hyperthermia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13181120 Application of MoM-GEC Method for Electromagnetic Study of Planar Microwave Structures: Shielding Application
Authors: Ahmed Nouainia, Mohamed Hajji, Taoufik Aguili
Abstract:
In this paper, an electromagnetic analysis is presented for describing the influence of shielding in a rectangular waveguide. A hybridization based on the method of moments combined to the generalized equivalent circuit MoM-GEC is used to model the problem. This is validated by applying the MoM-GEC hybridization to investigate a diffraction structure. It consists of electromagnetic diffraction by an iris in a rectangular waveguide. Numerical results are shown and discussed and a comparison with FEM and Marcuvitz methods is achieved.Keywords: Inductive irises, MoM-GEC, waveguide, shielding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11481119 Magnetic Field Analysis for a Distribution Transformer with Unbalanced Load Conditions by using 3-D Finite Element Method
Authors: P. Meesuk, T. Kulworawanichpong, P. Pao-la-or
Abstract:
This paper proposes a set of quasi-static mathematical model of magnetic fields caused by high voltage conductors of distribution transformer by using a set of second-order partial differential equation. The modification for complex magnetic field analysis and time-harmonic simulation are also utilized. In this research, transformers were study in both balanced and unbalanced loading conditions. Computer-based simulation utilizing the threedimensional finite element method (3-D FEM) is exploited as a tool for visualizing magnetic fields distribution volume a distribution transformer. Finite Element Method (FEM) is one among popular numerical methods that is able to handle problem complexity in various forms. At present, the FEM has been widely applied in most engineering fields. Even for problems of magnetic field distribution, the FEM is able to estimate solutions of Maxwell-s equations governing the power transmission systems. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.Keywords: Distribution Transformer, Magnetic Field, Load Unbalance, 3-D Finite Element Method (3-D FEM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26921118 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge
Authors: Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif
Abstract:
The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.Keywords: Paschen curve, Townsend coefficient, Secondaryelectron emission, Magnetic field, Minimum breakdown voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26131117 Optimal Controller Design for Linear Magnetic Levitation Rail System
Authors: Tooraj Hakim Elahi, Abdolamir Nekoubin
Abstract:
In many applications, magnetic suspension systems are required to operate over large variations in air gap. As a result, the nonlinearities inherent in most types of suspensions have a significant impact on performance. Specifically, it may be difficult to design a linear controller which gives satisfactory performance, stability, and disturbance rejection over a wide range of operating points. in this paper an optimal controller based on discontinuous mathematical model of the system for an electromagnetic suspension system which is applied in magnetic trains has been designed . Simulations show that the new controller can adapt well to the variance of suspension mass and gap, and keep its dynamic performance, thus it is superior to the classic controller.Keywords: Magnetic Levitation, optimal controller, mass and gap
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32051116 Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM
Authors: N. Yogal, C. Lehrmann
Abstract:
The use of permanent magnets (PM) is increasing in permanent magnet synchronous machines (PMSM) to fulfill the requirements of high efficiency machines in modern industry. PMSM are widely used in industrial applications, wind power plants and the automotive industry. Since PMSM are used in different environmental conditions, the long-term effect of NdFeB-based magnets at high temperatures and their corrosion behavior have to be studied due to the irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in a climatic chamber has been presented. The magnetic moment and magnetic field of the magnets were studied experimentally.
Keywords: Permanent magnets (PM), NdFeB, corrosion behavior, temperature effect, permanent magnet synchronous machine (PMSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591115 Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field
Authors: M. Kalbac, T. Verhagen, K. Drogowska, J. Vejpravova
Abstract:
One- and two-dimensional carbon nanostructures with sp2 hybridization of carbon atoms (single walled carbon nanotubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper we present a comparative study of graphene and single-wall carbon nanotubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nanostructures induced by a strong magnetic field.
Keywords: Carbon nanostructures, magnetic field, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26511114 New Device for Enhancement of Liposomal Magnetofection Efficiency of Cancer Cells
Authors: M. Baryshev, D.Vainauska, S. Kozireva, A.Karpovs
Abstract:
Liposomal magnetofection is the most powerful nonviral method for the nucleic acid delivery into the cultured cancer cells and widely used for in vitro applications. Use of the static magnetic field condition may result in non-uniform distribution of aggregate complexes on the surface of cultured cells. To prevent this, we developed the new device which allows to concentrate aggregate complexes under dynamic magnetic field, assisting more contact of these complexes with cellular membrane and, possibly, stimulating endocytosis. Newly developed device for magnetofection under dynamic gradient magnetic field, “DynaFECTOR", was used to compare transfection efficiency of human liver hepatocellular carcinoma cell line HepG2 with that obtained by lipofection and magnetofection. The effect of two parameters on transfection efficiency, incubation time under dynamic magnetic field and rotation frequency of magnet, was estimated. Liposomal magnetofection under dynamic gradient magnetic field showed the highest transfection efficiency for HepG2 cells.
Keywords: Dynamic magnetic field, Lipofection, Magnetofection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17621113 Design and Simulation of Low Noise Amplifier Circuit for 5 GHz to 6 GHz
Authors: Hossein Sahoolizadeh, Alishir Moradi Kordalivand, Zargham Heidari
Abstract:
In first stage of each microwave receiver there is Low Noise Amplifier (LNA) circuit, and this stage has important rule in quality factor of the receiver. The design of a LNA in Radio Frequency (RF) circuit requires the trade-off many importance characteristics such as gain, Noise Figure (NF), stability, power consumption and complexity. This situation Forces desingners to make choices in the desing of RF circuits. In this paper the aim is to design and simulate a single stage LNA circuit with high gain and low noise using MESFET for frequency range of 5 GHz to 6 GHz. The desing simulation process is down using Advance Design System (ADS). A single stage LNA has successfully designed with 15.83 dB forward gain and 1.26 dB noise figure in frequency of 5.3 GHz. Also the designed LNA should be working stably In a frequency range of 5 GHz to 6 GHz.Keywords: Advance Design System, Low Noise Amplifier, Radio Frequency, Noise Figure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50801112 Proton and Neutron Magnetic Moments Based On Bag Models
Authors: G. R. Boroun, R. Harami
Abstract:
Using form factors of the proton and the neutron for different of Q2, bag radius of the proton and the neutron can be obtained based on bag models. Then using static bag radius, magnetic moments of the proton and the neutron can be obtained and compared with other results.
Keywords: MIT bag model, proton and neutron, magnetic moment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16111111 A Single-chip Proportional to Absolute Temperature Sensor Using CMOS Technology
Authors: AL.AL, M. B. I. Reaz, S. M. A. Motakabber, Mohd Alauddin Mohd Ali
Abstract:
Nowadays it is a trend for electronic circuit designers to integrate all system components on a single-chip. This paper proposed the design of a single-chip proportional to absolute temperature (PTAT) sensor including a voltage reference circuit using CEDEC 0.18m CMOS Technology. It is a challenge to design asingle-chip wide range linear response temperature sensor for many applications. The channel widths between the compensation transistor and the reference transistor are critical to design the PTAT temperature sensor circuit. The designed temperature sensor shows excellent linearity between -100°C to 200° and the sensitivity is about 0.05mV/°C. The chip is designed to operate with a single voltage source of 1.6V.Keywords: PTAT, single-chip circuit, linear temperature sensor, CMOS technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34311110 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode
Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan
Abstract:
Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.Keywords: Cathode spot, vacuum arc discharge, transverse magnetic field, random walk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13981109 Analysis and Circuit Modeling of APDs
Authors: A. Ahadpour Shal, A. Ghadimi, A. Azadbar
Abstract:
In this paper a new method for increasing the speed of SAGCM-APD is proposed. Utilizing carrier rate equations in different regions of the structure, a circuit model for the structure is obtained. In this research, in addition to frequency response, the effect of added new charge layer on some transient parameters like slew-rate, rising and falling times have been considered. Finally, by trading-off among some physical parameters such as different layers widths and droppings, a noticeable decrease in breakdown voltage has been achieved. The results of simulation, illustrate some features of proposed structure improvement in comparison with conventional SAGCM-APD structures.Keywords: Optical communication systems (OCS), Circuit modeling, breakdown voltage, SAGCM APD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20671108 Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure
Authors: M. Battira, R. Bessaih
Abstract:
We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal.Keywords: Natural convection, Magnetic field, Oscillatory, Cavity, Liquid metal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15511107 Magnetization of Thin-Film Permalloy Ellipses used for Programmable Motion of Magnetic Particles
Authors: P. Warnicke
Abstract:
Simulations of magnetic microstructure in elliptical Permalloy elements used for controlled motion of magnetic particles are discussed. The saturating field of the elliptical elements was studied with respect to lateral dimensions for one-vortex, cross-tie, diamond and double-diamond states as initial zero-field domain configurations. With aspect ratio of 1:3 the short axis was varied from 125 nm to 1000 nm, whereas the thickness was kept constant at 50 nm.Keywords: Domain structure, magnetization, micromagnetics, Permalloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13981106 Effect of Magnetic Field on Seed Germination of Two Wheat Cultivars
Authors: Ahmad Gholami , Saeed Sharafi, Hamid Abbasdokht
Abstract:
The effect of magnetic field on germination characteristics of two wheat Seeds has been studied under laboratory conditions. Seeds were magnetically exposed to magnetic field strengths, 125 or 250mT for different periods of time. Mean germination time and the time required to obtain 10, 25, 50, 75 and 90%of seeds to germinate were calculated. The germination time for each treatment were in general, higher than corresponding control values, in the other word in treated seeds time required for mean seed germination time increased nearly 3 hours in compared non treated control seeds. T10 for doses D5, D6, D11 and D12 significantly higher than the control values for both cultivars. Mean germination time (MGT) in both cultivars significantly increased when the time of seed exposed at magnetic field treatments increased , about 3 and 2 hour respectively for Omid and BCR cultivars.Keywords: wheat, cultivar, germination test, magnetic field
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40541105 The Application of Homotopy Method In Solving Electrical Circuit Design Problem
Authors: Talib Hashim Hasan
Abstract:
This paper describes simple implementation of homotopy (also called continuation) algorithm for determining the proper resistance of the resistor to dissipate energy at a specified rate of an electric circuit. Homotopy algorithm can be considered as a developing of the classical methods in numerical computing such as Newton-Raphson and fixed point methods. In homoptopy methods, an embedding parameter is used to control the convergence. The method purposed in this work utilizes a special homotopy called Newton homotopy. Numerical example solved in MATLAB is given to show the effectiveness of the purposed methodKeywords: electrical circuit homotopy, methods, MATLAB, Newton homotopy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30301104 Magnetic Properties Govern the Processes of DNA Replication and the Shortening of the Telomere
Authors: Adnan Y. Rojeab
Abstract:
This hypothesis shows that the induction and the remanent of magnetic properties govern the mechanism processes of DNA replication and the shortening of the telomere. The solenoid–like formation of each parental DNA strand, which exists at the initial stage of the replication process, enables an electric charge transformation through the strand to produce a magnetic field. The magnetic field, in turn, induces the surrounding medium to form a new (replicated) strand by a remanent magnetisation. Through the remanent [residual] magnetisation process, the replicated strand possesses a similar information pattern to that of the parental strand. In the same process, the remanent amount of magnetisation forms the medium in which it has less of both repetitive and pattern magnetisation than that of the parental strand, therefore the replicated strand shows a shortening in the length of its telomeres.
Keywords: DNA replication, magnetic properties, residual magnetisation, shortening of the telomere.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27051103 Wafer Fab Operational Cost Monitoring and Controlling with Cost per Equivalent Wafer Out
Authors: Ian Kree, Davina Chin Lee Yien
Abstract:
This paper presents Cost per Equivalent Wafer Out, which we find useful in wafer fab operational cost monitoring and controlling. It removes the loading and product mix effect in the cost variance analysis. The operation heads, therefore, could immediately focus on identifying areas for cost improvement. Without this, they would have to measure the impact of the loading variance and product mix variance between actual and budgeted prior to make any decision on cost improvement. Cost per Equivalent Wafer Out, thereby, increases efficiency in wafer fab operational cost monitoring and controlling.
Keywords: Cost Control, Cost Variance, Operational Expenditure, Semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412