Magnetic Properties and Cytotoxicity of Ga-Mn Magnetic Ferrites Synthesized by the Citrate Sol-Gel Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Magnetic Properties and Cytotoxicity of Ga-Mn Magnetic Ferrites Synthesized by the Citrate Sol-Gel Method

Authors: Javier Sánchez, Laura Elena De León Prado, Dora Alicia Cortés Hernández

Abstract:

Magnetic spinel ferrites are materials that possess size, magnetic properties and heating ability adequate for their potential use in biomedical applications. The Mn0.5Ga0.5Fe2O4 magnetic nanoparticles (MNPs) were synthesized by sol-gel method using citric acid as chelating agent of metallic precursors. The synthesized samples were identified by X-Ray Diffraction (XRD) as an inverse spinel structure with no secondary phases. Saturation magnetization (Ms) of crystalline powders was 45.9 emu/g, which was higher than those corresponding to GaFe2O4 (14.2 emu/g) and MnFe2O4 (40.2 emu/g) synthesized under similar conditions, while the coercivity field (Hc) was 27.9 Oe. The average particle size was 18 ± 7 nm. The heating ability of the MNPs was enough to increase the surrounding temperature up to 43.5 °C in 7 min when a quantity of 4.5 mg of MNPs per mL of liquid medium was tested. Cytotoxic effect (hemolysis assay) of MNPs was determined and the results showed hemolytic values below 1% in all tested cases. According to the results obtained, these synthesized nanoparticles can be potentially used as thermoseeds for hyperthermia therapy.

Keywords: Cytotoxicity, heating ability, manganese-gallium ferrite, magnetic hyperthermia.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1131842

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328

References:


[1] Liu, X.L. & Fan, H.M., "Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications." Current Opinion in Chemical Engineering. 4, 38-46 (2014).
[2] Mornet, S., Vasseur, S., Grasset, F., Veverka, P., Goglio, G., Demourgues, A., Portier, J., Pollert, E. & Duguet, E., "Magnetic nanoparticle design for medical applications." Progress in Solid State Chemistry. 34, 237-247 (2006).
[3] Hergt, R., Dutz, S., Müller, R. & Zeisberger, M., "Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy." J. Phys.: Condens. Matter. 18, S2919-S2934 (2006).
[4] Lin, M., Huang, J. & Sha, M., "Recent advances in nanosized Mn–Zn ferrite magnetic fluid hyperthermia for cancer treatment." J. Nanosci. Nanotechnol. 14, 792-802 (2014).
[5] Makridis, A., Chatzitheodorou, I., Topouridou, K., Yavropoulou, M.P., Angelakeris, M. & Dendrinou-Samara, C. "A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia." Materials Science and Engineering: C. 63, 663-670 (2016).
[6] Verma, S., Khollam, Y.B., Potdar, H.S. & Deshpande, S.B., "Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method." Materials letters. 58, 1092-1095 (2004).
[7] Kuznetsova, V., Almjasheva, O. & Gusarov, V., "Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions." Glass Physics and Chemistry. 35, 205-209 (2009).
[8] Manikandan, A., Vijaya, J., Sundararajan, M., Meganathan, C., Kennedy, L. & Bououdina, M., "Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method." Superlattices and Microstructures. 64, 118-131 (2013).
[9] Wang, Y.M., Cao, X., Liu, G.H., Hong, R.H., Chen, Y.M., & et al., "Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia." Journal of Magnetism and Magnetic Materials. 323, 2953-2959 (2011).
[10] Doaga, A., Cojocariu, A.M., Amin, W., Heib, F., Bender, P., Hempelmann, R. & Caltun, O.F., "Synthesis and characterizations of manganese ferrites for hyperthermia applications." Materials Chemistry and Physics. 143, 305-310 (2013).
[11] Mozaffari, M., B. Behdadfar, & J. Amighian, "Preparation and characterization of manganese ferrite nanoparticles via co-precipitation method for hyperthermia." Iranian Journal of Pharmaceutical Sciences. 4, 115-118 (2008).
[12] Iftikhar, A., Islam, M.U., Awan, M.S., Ahmad, M., Naseem, S. & Asif Iqbal, M., "Synthesis of super paramagnetic particles of Mn 1−xMgxFe2O4 ferrites for hyperthermia applications." Journal of Alloys and Compounds. 601, 116-119 (2014).
[13] Lungu, A., Malaescu, I., Marin, C.N., Vlazan, P., & Sfirloaga, P., "The electrical properties of manganese ferrite powders prepared by two different methods." Physica B. 462, 80-85 (2015).
[14] Sharifi, I. & Shokrollahi, H., "Structural, magnetic and Mössbauer evaluation of Mn substituted Co–Zn ferrite nanoparticles synthesized by co-precipitation." Journal of Magnetism and Magnetic Materials, 334, 36-40 (2013).
[15] Farooq, H., Ahmad, M.R., Jamil, Y., Hafeez, A., Mahmood, Z. & Mahmood, T., "Structural and Dielectric Properties of Manganese Ferrite Nanoparticles." J. Basic Appl. Sci. 8, 597-601 (2012).
[16] Aakash, Choubey, R., Das D., & Mukherjee, S., "Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite." Journal of Alloys and Compounds. 668, 33-39 (2016).
[17] Cao, X., Liu, G., Wang, Y., Li, J. & Hong, R., "Preparation of octahedral shaped Mn0.8Zn0.2Fe2O4 ferrites via co-precipitation." Journal of Alloys and Compounds. 497, L9-L12 (2010).
[18] Kang, E., Park, J., Hwang, Y., Kang, M., Park, J.G., & Hyeon, T., "Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals." J. Phys. Chem. B. 108, 13932-13935 (2004).
[19] Monfared, A.H., Zamanian, A., Beygzadeh, M., Sharif, I. & Mozafari, M., "A rapid and efficient thermal decomposition approach for the synthesis of manganese-zinc/oleylamine core/shell ferrite nanoparticles." Journal of Alloys and Compounds. 693, 1090-1095 2(017).
[20] Vamvakidis, K., Sakellari, D., Angelakeris, M. & Dendrinou-Samara, C., "Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization." J Nanopart Res. 15, 1-11 (2013).
[21] Stoia, M., Barvinsch, P., Barbu, L., Barbu, M. & Stefanescu, M., "Synthesis of nanocrystalline nickel ferrite by thermal decomposition of organic precursors." J Therm Anal Calorim. 108, 1033-1039 (2011).
[22] Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., et al. "Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging." Biomaterials. 31, 3667-3673 (2010).
[23] Bellusci, M., Aliotta, C., Fiorani, D., La Barbera, A., Padella, F., et al "Manganese iron oxide superparamagnetic powder by mechanochemical processing. Nanoparticles functionalization and dispersion in a nanofluid." J Nanopart Res. 14, 1-11 (2012).
[24] Arana, M., Bercoff, P., Jacobo, S., Mendoza, P. & Pasquevich, G., "Mechanochemical synthesis of MnZn ferrite nanoparticles suitable for biocompatible ferrofluids." Ceramics International. 42, 1545-1551 (2016).
[25] Iwasaki, T., Nakatsuka, R., Murase, K., Takata, H., Nakamura, H. & Watano, S., "Simple and rapid synthesis of magnetite/hydroxyapatite composites for hyperthermia treatments via a mechanochemical route." Int. J. Mol. Sci. 14, 9365-9378 (2013).
[26] Bėčytė, V., Mažeika, K., Rakickas, T. & Pakštas, V., "Study of magnetic and structural properties of cobalt-manganese ferrite nanoparticles obtained by mechanochemical synthesis." Materials Chemistry and Physics. 172, 6-10 (2016).
[27] Sasaki, T., Ohara, S., Naka, T., Vejpravova, J., Sechovsky, V., Umetsu, M., et al. "Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction." J. of Supercritical Fluids. 53, 92-94 (2010).
[28] Freire, R., Freitas, P., Ribeiro, T., Vasconcelos, I., Denardin, J. et al. "Effect of solvent composition on the structural and magnetic properties of MnZn ferrite nanoparticles obtained by hydrothermal synthesis." Microfluidics and nanofluidics. 17, 233-244 (2014).
[29] Zahraei, M., Monshi , A., del Puerto Morales, M., Shahbazi-Gahrouei, D., Amirnasr, M. & Behdadfar, B., "Hydrothermal synthesis of fine stabilized superparamagnetic nanoparticles of Zn2+ substituted manganese ferrite." Journal of Magnetism and Magnetic Materials. 393, 429-436 (2015).
[30] Szczygiel, I. & Winiarska, K., "Low-temperature synthesis and characterization of the Mn–Zn ferrite." J Therm Anal Calorim. 104, 577-583 (2010).
[31] Mazario, E., Menendez, N., Herrasti, P., Cañete, M. & Connord, V., Carrey, J., "Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles." The Journal of Physical Chemistry C. 117, 11405-11411 (2013).
[32] Phong, P., Nam, P., Manh, D. & Lee, I., "Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy." Journal of Magnetism and Magnetic Materials. 433, 76-83 (2017).
[33] Mosivand, S. & Kazeminezhad, I., "A novel synthesis method for manganese ferrite nanopowders: The effect of manganese salt as inorganic additive in electrosynthesis cell." Ceramics International. 41, 8637-8642 (2015).
[34] Pradhan, P., Giri, J., Banerjee, R., Bellare, J. & Bahadur, D., "Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer." Journal of Magnetism and Magnetic Materials. 311, 208-215 (2007).
[35] Yang, C. & Jianbo, L., "Preparation and characterization of Mn–Zn ferrite/poly (N, N′-isopropyl acrylamide) core/shell nanocomposites via in-situ polymerization." Materials Letters. 64, 1570-1573 (2010).
[36] Kuruva, P., Matteppanavar, S., Srinath, S. & Thomas, T., "Size control and magnetic property trends in cobalt ferrite nanoparticles synthesized using an aqueous chemical route." IEEE Transactions on Magnetics. 50, 1-8 (2014).
[37] Goswami, P.P., Choudhury, H.A., Chakma, S. & MoholkarV.S., "Sonochemical synthesis of cobalt ferrite nanoparticles." International Journal of Chemical Engineering. 2013, 1-6 (2013).
[38] Gurumoorthy, M., Parasuraman, K., Anbarasu, M. & Balamurugan, K., "Synthesis and Characterization of MnFe2O4 Nanoparticles by Hydrothermal Method." Nano Vision. 5, 39-168 (2015).
[39] Peng, E., Guang, E.S., Chandrasekharan, P., Yang, C.T., Ding, J. et al., "Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications." Small. 8, 3620-3630 (2012).
[40] Pemartin, K., Solans, C., Alvarez, J. & Sanchez, M., "Synthesis of Mn–Zn ferrite nanoparticles by the oil-in-water microemulsion reaction method." Colloids and Surfaces A: Physicochemical and Engineering Aspects. 451, 161-171 (2014).
[41] Sahoo, B., Sanjana, K., Dutta, S., Maiti, T., Pramanik, P. & Dhara, D., "Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications." Journal of colloid and Interface Science. 431, 31-41 (2014).
[42] Sanpo, N., Wang, J. & Berndt, C.C., "Sol-gel synthesized copper-substituted cobalt ferrite nanoparticles for biomedical applications." Journal of nano research. 22, 95-106 (2013).
[43] Jasso-Terán, R.A., Cortés-Hernández, D.A., Sánchez-Fuentes, H.J., Reyes-Rodríguez, P.Y., de-León-Prado, L.E., Escobedo-Bocardo, J.C. & Almanza-Robles, J.M., "Synthesis, characterization and hemolysis studies of Zn(1−x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications." Journal of Magnetism and Magnetic Materials. 427, 241-244 (2017).
[44] Ali, M.B., Maalam, K.E., Moussaoui, H.E., Mounkachi, O., Hamedoun, M. et al. "Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method." Journal of Magnetism and Magnetic Materials. 398, 20-25 (2016).
[45] Sulaiman, N.H., Ghazali, M.J., Majlis, B.Y., Yunas, J. & Razali, M., "Superparamagnetic calcium ferrite nanoparticles synthesized using a simple sol-gel method for targeted drug delivery." Bio-Medical Materials and Engineering. 26, S103-S110 (2015).
[46] Beji, Z., Hanini, A., Smiri, L.S., Gavard, J., Kacem, K. et al. "Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells." Chem. Mater. 22, 420-5429 (2010).
[47] Kanagesan, S., Aziz, S.B.A., Hashim, M., Ismail, I., Tamilselvan, S. et al. "Synthesis, Characterization and in vitro evaluation of manganese ferrite (MnFe2O4) nanoparticles for their biocompatibility with murine breast cancer cells (4T1)." Molecules. 21, 312 (2016).
[48] Jeun, M., Park, S., Jang, G. & Lee, K., "Tailoring MgxMn1–xFe2O4 Superparamagnetic Nanoferrites for Magnetic Fluid Hyperthermia Applications." ACS Appl. Mater. Interfaces. 6, 16487-16492 (2014).
[49] Md Gazzali, P., Kanimozhi, V., Priyadharsini, P. & Chandrasekaran, G., "Structural and Magnetic properties of Ultrafine Magnesium Ferrite Nanoparticles." Advanced Materials Research. 938, 128-133 (2014).
[50] Yadav, R.S., Havlica, J., Hnatko, M., Šajgalík, P., Alexander, C. et al. "Magnetic properties of Co1−xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling." Journal of Magnetism and Magnetic Materials. 378, 190-199 (2015).
[51] Bifa, J., Changan, T., Quanzheng, Z., Dongdong, J., Jie, Y. et al. "Magnetic properties of samarium and gadolinium co-doping Mn-Zn ferrites obtained by sol-gel auto-combustion method." Journal of Rare Earths. 34, 1017-1023 (2016).
[52] Ebrahimi, S.S. & Masoudpanah, S.M,, "Effects of pH and citric acid content on the structure and magnetic properties of MnZn ferrite nanoparticles synthesized by a sol–gel autocombustion method." Journal of Magnetism and Magnetic Materials. 357, 77-81 (2014).
[53] Masoudpanah, S.M., Seyyed, S.A., Derakhshani, M. & Mirkazemi, S.M., "Structure and magnetic properties of La substituted ZnFe2O4 nanoparticles synthesized by sol–gel autocombustion method." Journal of Magnetism and Magnetic Materials. 370, 122-126 (2014).
[54] Deganello, F., Marcì, G. & Deganello, G., "Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach." Journal of the European Ceramic Society. 29, 439-450 (2009).
[55] Mohseni, H., Shokrollahi, H., Sharif, I. & Gheisari, Kh., "Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine nitrate process." Journal of Magnetism and Magnetic Materials. 324, 3741-3747 (2012).
[56] Winiarska, K., Szczygieł, I., & Klimkiewicz, R., "Manganese–zinc ferrite synthesis by the sol–gel autocombustion method. Effect of the precursor on the ferrite’s catalytic properties." Industrial & Engineering Chemistry Research. 52, 353-361 (2012).
[57] Topkaya, R., Kurtan, U., Baykal, A. & Toprak, M.S., "Polyvinylpyrrolidone (PVP)/MnFe2O4 nanocomposite: sol–gel autocombustion synthesis and its magnetic characterization." Ceramics International. 39, 5651-5658 (2013).
[58] Murugesan, C., Sathyamoorthy, B. & Chandrasekaran, G., "Structural, dielectric and magnetic properties of Gd substituted manganese ferrite nanoparticles." Phys. Scr. 90, 085809 (2015).
[59] Azadmanjiri, J., "Preparation of Mn–Zn ferrite nanoparticles from chemical sol–gel combustion method and the magnetic properties after sintering." Journal of Non-Crystalline Solids. 353, 4170-4173 (2007).
[60] Ebrahimi, S.S., Masoudpanah, S.M., Amiri, H. & Yousefzadeh, M., "Magnetic properties of MnZn ferrite nanoparticles obtained by SHS and sol-gel autocombustion techniques." Ceramics International. 40, 6713-6718 (2014).
[61] Shirsath, S.E., Toksha, B.G., Kadam, R.H., Patange, S.M., Mane, D.R. et al. "Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion." Journal of Physics and Chemistry of Solids. 71, 1669-1675 (2010).
[62] Sanpo, N., Berndt, C.C., Wen, C. & Wang, J., "New Approaches to the Study of Spinel Ferrite Nanoparticles for Biomedical Applications." Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques. 1417-1441 (2016).
[63] Sánchez, J., Cortés-Hernández, D.A., Escobedo-Bocardo, J.C., Jasso-Teràn, R.A. & Zugasti-Cruz, A., "Bioactive magnetic nanoparticles of Fe–Ga synthesized by sol–gel for their potential use in hyperthermia treatment." J Mater Sci: Mater Med. 25, 2237-2242 (2014).
[64] Sánchez, J., Cortés-Hernández, D.A., Escobedo-Bocardo, J.C., Almanza-Robles, J.M., Reyes-Rodríguez, P.Y. et al. "Sol-gel synthesis of MnxGa1−xFe2O4 nanoparticles as candidates for hyperthermia treatment." Ceramics International. 42, 13755-13760 (2016).
[65] Sánchez, J., Cortés-Hernández, D.A., Escobedo-Bocardo, J.C., Almanza-Robles, J.M., Reyes-Rodríguez, P.Y. et al. "Synthesis of MnxGa1−xFe2O4 magnetic nanoparticles by thermal decomposition method for medical diagnosis applications." Journal of Magnetism and Magnetic Materials. 427, 272-275 (2017).
[66] Vamvakidis, K., Sakellari, D., Angelakeris, M. & Dendrinou-Samara, C., "Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization." J Nanopart Res. 15. 1743 (2013).
[67] Makridis, A., Topouridou, K., Tziomaki, M., Sakellari, D., Simeonidis, K. et al. "In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents." J. Mater. Chem. B. 2, 8390-8398 (2014).
[68] Zipare, K., Dhumal, J., Bandgar, S., Mathe, V. & Shahane, G., "Superparamagnetic manganese ferrite nanoparticles: synthesis and magnetic properties." Journal of Nanoscience and Nanoengineering. 1, 178-182 (2015).
[69] Rodrigues, A.R.O., Ramos, J.M.F., Gomes, I.T., Almeida, B.G., Araújo, J.P. et al. "Magnetoliposomes based on manganese ferrite nanoparticles as nanocarriers for antitumor drugs." RSC Adv.. 6, 17302-17313 (2016).
[70] Mazarío, E., Sánchez-Marcos, J., Menéndez, N., Cañete, M., Mayoral. A. et al. "High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route." J. Phys. Chem. C. 119, 6828-6834 (2015).
[71] Huang, C.-C., Su, C.-H., Liao, M.-Y. & Yeh, C.-S., "Magneto-optical FeGa2O4 nanoparticles as dual-modality high contrast efficacy T2 imaging and cathodoluminescent agents." Physical Chemistry Chemical Physics. 11, 6331-6334 (2009).
[72] Laurent, S., Dutz, S., Häfeli, U.O. & Mahmoudi, M., "Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface science. 166, 8-23 (2011).
[73] Lima, E., Torres, T.E., Rossi, L.M., Rechenberg, H.R., Berquo, T.S. et al. "Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles." J Nanopart Res. 15, 1654 (2013).
[74] Cornell, R.M. & Schwertmann, U., "The iron oxides: structure, properties, reactions, occurrences and uses." John Wiley & Sons. (2003)
[75] Li, J., Yuan, H., Li, G., Liu, Y. & Leng, J., "Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles." Journal of Magnetism and Magnetic Materials. 322, 3396-3400 (2010).
[76] Carter, C.B. & Norton, M.G., "Ceramic materials: science and engineering." Springer Science & Business Media. (2007).
[77] Briceño, S., Bramer-Escamilla, W., Silva, P., Delgado, G.E., Plaza, E. et al. "Effects of synthesis variables on the magnetic properties of CoFe 2 O 4 nanoparticles." Journal of Magnetism and Magnetic Materials. 324, 2926-2931 (2012).
[78] Sheng-Nan, S., Chao, W., Zan-Zan, Z., Yang-Long, H., Venkatraman, S.S. & Zhi-Chuan, X., "Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications." Chin. Phys. B. 23, 037503 (2014).
[79] Peng, E., Ding, J. & Xue J.M., "Concentration-dependent magnetic hyperthermic response of manganese ferrite-loaded ultrasmall graphene oxide nanocomposites." New J. Chem. 38, 2312-2319 (2014).