Search results for: bag radius of the nucleon.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 194

Search results for: bag radius of the nucleon.

74 Molecular Dynamics Simulation of Liquid-Vapor Interface on the Solid Surface Using the GEAR-S Algorithm

Authors: D. Toghraie, A. R. Azimian

Abstract:

In this paper, the Lennard -Jones potential is applied to molecules of liquid argon as well as its vapor and platinum as solid surface in order to perform a non-equilibrium molecular dynamics simulation to study the microscopic aspects of liquid-vapor-solid interactions. The channel is periodic in x and y directions and along z direction it is bounded by atomic walls. It was found that density of the liquids near the solid walls fluctuated greatly and that the structure was more like a solid than a liquid. This indicates that the interactions of solid and liquid molecules are very strong. The resultant surface tension, liquid density and vapor density are found to be well predicted when compared with the experimental data for argon. Liquid and vapor densities were found to depend on the cutoff radius which induces the use of P3M (particle-particle particle-mesh) method which was implemented for evaluation of force and surface tension.

Keywords: Lennard-Jones Potential, Molecular DynamicsSimulation, Periodic Boundary Conditions (PBC), Non-EquilibriumMolecular Dynamics (NEMD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
73 Investigation of Chip Formation Characteristics during Surface Finishing of HDPE Samples

Authors: M. S. Kaiser, S. Reaz Ahmed

Abstract:

Chip formation characteristics are investigated during surface finishing of high density polyethylene (HDPE) samples using a shaper machine. Both the cutting speed and depth of cut are varied continually to enable observations under various machining conditions. The generated chips are analyzed in terms of their shape, size, and deformation. Their physical appearances are also observed using digital camera and optical microscope. The investigation shows that continuous chips are obtained for all the cutting conditions. It is observed that cutting speed is more influential than depth of cut to cause dimensional changes of chips. Chips curl radius is also found to increase gradually with the increase of cutting speed. The length of continuous chips remains always smaller than the job length, and the corresponding discrepancies are found to be more prominent at lower cutting speed. Microstructures of the chips reveal that cracks are formed at higher cutting speeds and depth of cuts, which is not that significant at low depth of cut.

Keywords: HDPE, surface-finishing, chip formation, deformation, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
72 Effects of Thread Dimensions of Functionally Graded Dental Implants on Stress Distribution

Authors: Kaman M. O., Celik N.

Abstract:

In this study, stress distributions on dental implants made of functionally graded biomaterials (FGBM) are investigated numerically. The implant body is considered to be subjected to axial compression loads. Numerical problem is assumed to be 2D, and ANSYS commercial software is used for the analysis. The cross section of the implant thread varies as varying the height (H) and the width (t) of the thread. According to thread dimensions of implant and material properties of FGBM, equivalent stress distribution on the implant is determined and presented with contour plots along with the maximum equivalent stress values. As a result, with increasing material gradient parameter (n), the equivalent stress decreases, but the minimum stress distribution increases. Maximum stress values decrease with decreasing implant radius (r). Maximum von Mises stresses increases with decreasing H when t is constant. On the other hand, the stress values are not affected by variation of t in the case of H = constant.

Keywords: Functionally graded biomaterials, dental implant finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3075
71 Passive Non-Prehensile Manipulation on Helix Path Based on Mechanical Intelligence

Authors: Abdullah Bajelan, Adel Akbarimajd

Abstract:

Object manipulation techniques in robotics can be categorized in two major groups including manipulation with grasp and manipulation without grasp. The original aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled. The manipulation path is a helix track with constant radius and incline. The method presented in this paper proposes a system which has not the actuator and the active controller. So this system requires a passive mechanical intelligence to convey the object from the status of the source along the specified path to the goal state. This intelligent is created based on utilizing the geometry of the system components. A general set up for the components of the system is considered to satisfy the required conditions. Then after kinematical analysis, detailed dimensions and geometry of the mechanism is obtained. The kinematical results are verified by simulation in ADAMS.

Keywords: Mechanical intelligence, Object manipulation, Passive mechanism, Passive non-prehensile manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
70 Dynamic Modeling and Simulation of Heavy Paraffin Dehydrogenation Reactor for Selective Olefin Production in Linear Alkyl Benzene Production Plant

Authors: G. Zahedi, H. Yaghoobi

Abstract:

Modeling of a heterogeneous industrial fixed bed reactor for selective dehydrogenation of heavy paraffin with Pt-Sn- Al2O3 catalyst has been the subject of current study. By applying mass balance, momentum balance for appropriate element of reactor and using pressure drop, rate and deactivation equations, a detailed model of the reactor has been obtained. Mass balance equations have been written for five different components. In order to estimate reactor production by the passage of time, the reactor model which is a set of partial differential equations, ordinary differential equations and algebraic equations has been solved numerically. Paraffins, olefins, dienes, aromatics and hydrogen mole percent as a function of time and reactor radius have been found by numerical solution of the model. Results of model have been compared with industrial reactor data at different operation times. The comparison successfully confirms validity of proposed model.

Keywords: Dehydrogenation, fixed bed reactor, modeling, linear alkyl benzene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3026
69 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

Authors: Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif

Abstract:

The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.

Keywords: Paschen curve, Townsend coefficient, Secondaryelectron emission, Magnetic field, Minimum breakdown voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
68 Analysis of Wave Propagation in Two-dimensional Phononic Crystals with Hollow Cylinders

Authors: Zi-Gui Huang, Tsung-Tsong Wu

Abstract:

Large full frequency band gaps of surface and bulk acoustic waves in two-dimensional phononic band structures with hollow cylinders are addressed in this paper. It is well-known that absolute frequency band gaps are difficultly obtained in a band structure consisted of low-acoustic-impedance cylinders in high-acoustic-impedance host materials such as PMMA/Ni band structures. Phononic band structures with hollow cylinders are analyzed and discussed to obtain large full frequency band gaps not only for bulk modes but also for surface modes. The tendency of absolute frequency band gaps of surface and bulk acoustic waves is also addressed by changing the inner radius of hollow cylinders in this paper. The technique and this kind of band structure are useful for tuning the frequency band gaps and the design of acoustic waveguides.

Keywords: Phononic crystals, Band gap, SAW, BAW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
67 Study on the Deformation Modes of an Axially Crushed Compact Impact Absorption Member

Authors: Shigeyuki Haruyama, Hiroyuki Tanaka, Dai-Heng Chen, Aidil Khaidir Bin Muhamad

Abstract:

In this paper, the deformation modes of a compact impact absorption member subjected to axial compression are investigated using finite element method and experiments. A multiple combination compact impact absorption member, referred to as a 'compress-expand member', is proposed to substitute the conventional thin-walled circular tube. This study found that the proposed compact impact absorption member has stable load increase characteristics and a wider range of high load efficiency (Pave/Pmax) than the thin-walled circular tube. Moreover, the proposed compact impact absorption member can absorb larger loads in a smaller radius than the thin-walled cylindrical tube, as it can maintain its stable deformation in increased wall thicknesses.

Keywords: axial collapse, compact impact absorption member, finite element method, thin-walled cylindrical tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
66 Measurement of UHF Signal Strength Propagating from Road Surface with Vehicle Obstruction

Authors: C. Thongsopa, P. Sukphongchirakul, A. Intarapanich, P. Jarataku

Abstract:

Radio wave propagation on the road surface is a major problem on wireless sensor network for traffic monitoring. In this paper, we compare receiving signal strength on two scenarios 1) an empty road and 2) a road with a vehicle. We investigate the effect of antenna polarization and antenna height to the receiving signal strength. The transmitting antenna is installed on the road surface. The receiving signal is measured 360 degrees around the transmitting antenna with the radius of 2.5 meters. Measurement results show the receiving signal fluctuation around the transmitting antenna in both scenarios. Receiving signal with vertical polarization antenna results in higher signal strength than horizontal polarization antenna. The optimum antenna elevation is 1 meter for both horizon and vertical polarizations with the vehicle on the road. In the empty road, the receiving signal level is unvarying with the elevation when the elevation is greater than 1.5 meters.

Keywords: Wave propagation, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
65 Effect of Greywater Irrigation on Air-Water Interfacial area in Porous Medium

Authors: A. H. M. Faisal Anwar

Abstract:

In this study, the effect of greywater irrigation on airwater interfacial area is investigated. Several soil column experiments were conducted for different greywater irrigation to develop the pressure-saturation curves. Surface tension was measured for different greywater concentration and fitted for Gibbs adsorption equation. Pressure-saturation curves show that the reduction of capillary rise stops when it reaches its critical micelle concentration (CMC). A simple theory is derived from pressure-saturation curves for calculating air-water interfacial area in porous medium during greywater irrigation by introducing a term 'hydraulic radius' for the pores. This term diminishes any effect of pore shapes on the air-water interfacial area. The air-water interfacial area was calculated using the pressure-saturation curves and found that it decreases with increasing moisture content. But no significant effect was observed on air-water interfacial area for different greywater irrigation. A maximum of 10% variation in interfacial area was observed at the residual saturation zone.

Keywords: Greywater, Irrigation, Interfacial area, Surface tension, Porous medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
64 Density Clustering Based On Radius of Data (DCBRD)

Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.

Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
63 An Efficient Passive Planar Micromixer with Finshaped Baffles in the Tee Channel for Wide Reynolds Number Flow Range

Authors: C. A. Cortes-Quiroz, A. Azarbadegan, E. Moeendarbary

Abstract:

A new design of a planar passive T-micromixer with fin-shaped baffles in the mixing channel is presented. The mixing efficiency and the level of pressure loss in the channel have been investigated by numerical simulations in the range of Reynolds number (Re) 1 to 50. A Mixing index (Mi) has been defined to quantify the mixing efficiency, which results over 85% at both ends of the Re range, what demonstrates the micromixer can enhance mixing using the mechanisms of diffusion (lower Re) and convection (higher Re). Three geometric dimensions: radius of baffle, baffles pitch and height of the channel define the design parameters, and the mixing index and pressure loss are the performance parameters used to optimize the micromixer geometry with a multi-criteria optimization method. The Pareto front of designs with the optimum trade-offs, maximum mixing index with minimum pressure loss, is obtained. Experiments for qualitative and quantitative validation have been implemented.

Keywords: Computational fluids dynamics, fin-shaped baffle, mixing strategies, multi-objective optimization, passive micromixer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
62 Migration and Accumulation of Artificial Radionuclides in the System Water-Soil-Plants Depending on Polymers Applying

Authors: Anna H. Tadevosyan, Stepan K. Mayrapetyan, Michael P. Schellenberg, Laura M. Ghalachyan, Albert H. Hovsepyan, Khachatur S. Mayrapetyan

Abstract:

The possibility of radionuclides-related contamination of lands at agricultural holdings defines the necessity to apply special protective measures in plant growing. The aim of researches is to elucidate the influence of polymers applying on biological migration of man-made anthropogenic radionuclides 90Sr and 137Cs in the system water - soil – plant. The tests are being carried out under field conditions with and without application of polymers in root-inhabited media in more radioecological tension zone (with the radius of 7 km from the Armenian Nuclear Power Plant). The polymers on the base of K+, Caµ, KµCaµ ions were tested. Productivity of pepper depending on the presence and type of polymer material, content of artificial radionuclides in waters, soil and plant material has been determined. The character of different polymers influence on the artificial radionuclides migration and accumulation in the system water-soil-plant and accumulation in the plants has been cleared up.

Keywords: accumulation of artificial radionuclides, pepper, polymer, water-soil-plant system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
61 The Self-Energy of an Ellectron Bound in a Coulomb Field

Authors: J. Zamastil, V. Patkos

Abstract:

Recent progress in calculation of the one-loop selfenergy of the electron bound in the Coulomb field is summarized. The relativistic multipole expansion is introduced. This expansion is based on a single assumption: except for the part of the time component of the electron four-momentum corresponding to the electron rest mass, the exchange of four-momentum between the virtual electron and photon can be treated perturbatively. For non Sstates and normalized difference n3En −E1 of the S-states this itself yields very accurate results after taking the method to the third order. For the ground state the perturbation treatment of the electron virtual states with very high three-momentum is to be avoided. For these states one can always rearrange the pertinent expression in such a way that free-particle approximation is allowed. Combination of the relativistic multipole expansion and free-particle approximation yields very accurate result after taking the method to the ninth order. These results are in very good agreement with the previous results obtained by the partial wave expansion and definitely exclude the possibility that the uncertainity in determination of the proton radius comes from the uncertainity in the calculation of the one-loop selfenergy.

Keywords: Hydrogen-like atoms, self-energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
60 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal

Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen

Abstract:

In this study, we demonstrate a high-resolution refractive index sensor based on a Magnetic Photonic Crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of  Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.

Keywords: Magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
59 Effect of Eccentricity on Conjugate Natural Convection in Vertical Eccentric Annuli

Authors: A. Jamal, M. A. I. El-Shaarawi, E. M. A. Mokheimer

Abstract:

Combined conduction-free convection heat transfer in vertical eccentric annuli is numerically investigated using a finitedifference technique. Numerical results, representing the heat transfer parameters such as annulus walls temperature, heat flux, and heat absorbed in the developing region of the annulus, are presented for a Newtonian fluid of Prandtl number 0.7, fluid-annulus radius ratio 0.5, solid-fluid thermal conductivity ratio 10, inner and outer wall dimensionless thicknesses 0.1 and 0.2, respectively, and dimensionless eccentricities 0.1, 0.3, 0.5, and 0.7. The annulus walls are subjected to thermal boundary conditions, which are obtained by heating one wall isothermally whereas keeping the other wall at inlet fluid temperature. In the present paper, the annulus heights required to achieve thermal full development for prescribed eccentricities are obtained. Furthermore, the variation in the height of thermal full development as function of the geometrical parameter, i.e., eccentricity is also investigated.

Keywords: Conjugate natural convection, eccentricity, heat transfer, vertical eccentric annuli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
58 Compact Dual-Band Bandpass Filter Based on Quarter Wavelength Stepped Impedance Resonators

Authors: Yu-Fu Chen, Zih-Jyun Dai, Chen-Te Chiu, Shiue-Chen Chiou, Yung-Wei Chen, Yu-Ming Lin, Kuan-Yu Chen, Hung-Wei Wu, Hsin-Ying Lee, Yan-Kuin Su, Shoou-Jinn Chang

Abstract:

This paper presents a compact dual-band bandpass filter that involves using the quarter wavelength stepped impedance resonators (SIRs) for achieving simultaneously compact circuit size and good dual-band performance. The filter is designed at 2.4 / 3.5 GHz and constructed by two pairs of quarter wavelength SIRs and source-load lines. By properly tuning the impedance ratio, length ratio and radius of via hole of the SIRs, dual-passbands performance can be easily determined. To improve the passband selectivity, the use of source-load lines is to increase coupling energy between the resonators. The filter is showing simple configuration, effective design method and small circuit size. The measured results are in good agreement with the simulation results.

Keywords: Dual-band, bandpass filter, stepped impedance resonators, SIR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
57 Advance in Monitoring and Process Control of Surface Roughness

Authors: Somkiat Tangjitsitcharoen, Siripong Damrongthaveesak

Abstract:

This paper presents an advance in monitoring and process control of surface roughness in CNC machine for the turning and milling processes. An integration of the in-process monitoring and process control of the surface roughness is proposed and developed during the machining process by using the cutting force ratio. The previously developed surface roughness models for turning and milling processes of the author are adopted to predict the inprocess surface roughness, which consist of the cutting speed, the feed rate, the tool nose radius, the depth of cut, the rake angle, and the cutting force ratio. The cutting force ratios obtained from the turning and the milling are utilized to estimate the in-process surface roughness. The dynamometers are installed on the tool turret of CNC turning machine and the table of 5-axis machining center to monitor the cutting forces. The in-process control of the surface roughness has been developed and proposed to control the predicted surface roughness. It has been proved by the cutting tests that the proposed integration system of the in-process monitoring and the process control can be used to check the surface roughness during the cutting by utilizing the cutting force ratio.

Keywords: Turning, milling, monitoring, surface roughness, cutting force ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
56 Optimizing Electrospinning Parameters for Finest Diameter of Nano Fibers

Authors: M. Maleki, M. Latifi, M. Amani-Tehran

Abstract:

Nano fibers produced by electrospinning are of industrial and scientific attention due to their special characteristics such as long length, small diameter and high surface area. Applications of electrospun structures in nanotechnology are included tissue scaffolds, fibers for drug delivery, composite reinforcement, chemical sensing, enzyme immobilization, membrane-based filtration, protective clothing, catalysis, solar cells, electronic devices and others. Many polymer and ceramic precursor nano fibers have been successfully electrospun with diameters in the range from 1 nm to several microns. The process is complex so that fiber diameter is influenced by various material, design and operating parameters. The objective of this work is to apply genetic algorithm on the parameters of electrospinning which have the most significant effect on the nano fiber diameter to determine the optimum parameter values before doing experimental set up. Effective factors including initial polymer concentration, initial jet radius, electrical potential, relaxation time, initial elongation, viscosity and distance between nozzle and collector are considered to determine finest diameter which is selected by user.

Keywords: Electrospinning, genetic algorithm, nano fiber diameter, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
55 Characterising Effects of Applied Loads on the Mechanical Properties of Formed Steel Sheets

Authors: Esther T. Akinlabi, Stephen A. Akinlabi

Abstract:

The purpose of this research study is to investigate the manner in which various loads affect the mechanical properties of the formed mild steel plates. The investigation focuses on examining the cross-sectional area of the metal plate at the centre of the formed mild steel plate. Six mild steel plates were deformed with different loads. The loads applied on the plates had a magnitude of 5 kg, 10 kg, 15 kg, 20 kg, 25 kg and 30 kg. The radius of the punching die was 120 mm and the loads were applied at room temperature. The investigations established that the applied load causes the Vickers microhardness at the cross-sectional area of the plate to increase due to strain hardening. Hence, the percentage increase of the hardness due to the load was found to be directly proportional to the increase in the load. Furthermore, the tensile test results for the parent material showed that the average Ultimate Tensile Strength (UTS) for the three samples was 308 MPa while the average Yield Strength and Percentage Elongation were 227 MPa and 38 % respectively. Similarly, the UTS of the formed components increased after the deformation of the plate, as such it can be concluded that the forming loads alter the mechanical properties of the materials by improving and strengthening the material properties.

Keywords: Applied load, forming and Mechanical Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
54 Modeling of Steady State Creep in Thick-Walled Cylinders under Internal Pressure

Authors: Tejeet Singh, Ishavneet Singh

Abstract:

The present study focused on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminum matrix reinforced with silicon-carbide in particulate form. The creep behavior of the composite material has been described by the threshold stress based creep law. The values of stress exponent appearing in the creep law were selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stress and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.

Keywords: Steady state creep, composite, cylinder, pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
53 Design and Experiment of Orchard Gas Explosion Subsoiling and Fertilizer Injection Machine

Authors: Xiaobo Xi, Ruihong Zhang

Abstract:

At present, the orchard ditching and fertilizing technology has a series of problems, such as easy tree roots damage, high energy consumption and uneven fertilizing. In this paper, a gas explosion subsoiling and fertilizer injection machine was designed, which used high pressure gas to shock soil body and then injected fertilizer. The drill pipe mechanism with pneumatic chipping hammer excitation and hydraulic assistance was designed to drill the soil. The operation of gas and liquid fertilizer supply was controlled by PLC system. The 3D model of the whole machine was established by using SolidWorks software. The machine prototype was produced, and field experiments were carried out. The results showed that soil fractures were created and diffused by gas explosion, and the subsoiling effect radius reached 40 cm under the condition of 0.8 MPa gas pressure and 30 cm drilling depth. What’s more, the work efficiency is 0.048 hm2/h at least. This machine could meet the agronomic requirements of orchard, garden and city greening fertilization, and the tree roots were not easily damaged and the fertilizer evenly distributed, which was conducive to nutrient absorption of root growth.

Keywords: Gas explosion subsoiling, fertigation, pneumatic chipping hammer exciting, soil compaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
52 Study on Geometric Design of Nay Pyi Taw-Mandalay Expressway and Possible Improvements; Sagarinn-Myinsain Portion

Authors: War War Myint

Abstract:

Geometric design is an important part of planning process design for physical highway to fill up basic function of roads, to give good traffic service. It is found that most of the road safety problems occur at the horizontal curves and complex-compound curves. In this paper, review on Sagarinn-Myinsain Portion of Nay Pyi Taw - Mandalay highway has been conducted in aspect of geometric design induced road safety condition. Horizontal alignment of geometric features and curve details are reviewed based on (AASHTO) standard and revised by Autodesk Land Desktop Software. Moreover, 85th Percentile Operation Speeds (V85) with driver confidence on horizontal curves is evaluated in order to obtain the range of highway safety factor (FS). The length of the selected highway portion is 13.65 miles and 8 lanes. The results of this study can be used to investigate the possible hazardous locations in advance and to revise how design radius and super elevation should be for better road safety performance for the selected portion. Moreover, the relationship between highway safety and highway geometry characteristics can also be known.

Keywords: Geometric design; horizontal alignment; superelevation; 85th percentile operation speed (V85), safety factor (FS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
51 Effect of Sintering Temperature Curve in Wick Manufactured for Loop Heat Pipe

Authors: Shen-Chun Wu, Chuo-Jeng Huang, Wun-Hong Yang, Jy-Cheng Chang, Chien-Chun Kung

Abstract:

This investigation examines the effect of the sintering temperature curve in manufactured nickel powder capillary structure (wick) for a loop heat pipe (LHP). The sintering temperature curve is composed of a region of increasing temperature; a region of constant temperature and a region of declining temperature. The most important region is that in which the temperature increases, as an index in the stage in which the temperature increases. The wick of nickel powder is manufactured in the stage of fixed sintering temperature and the time between the stage of constant temperature and the stage of falling temperature. When the slope of the curve in the region of increasing temperature is unity (equivalent to 10 °C/min), the structure of the wick is complete and the heat transfer performance is optimal. The result of experiment test demonstrates that the heat transfer performance is optimal at 320W; the minimal total thermal resistance is approximately 0.18°C/W, and the heat flux is 17W/cm2; the internal parameters of the wick are an effective pore radius of 3.1 μm, a permeability of 3.25×10-13m2 and a porosity of 71%.

Keywords: Loop heat pipe (LHP), capillary structure (wick), sintered temperature curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
50 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device

Authors: Muthana A. M. Jameel Al-Jaboori

Abstract:

In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.

Keywords: Water wave, model, wells turbine, MATLAB program, results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
49 Sanitary Measures in Piggeries, Awareness and Risk Factors of African Swine Fever in Benue State, Nigeria

Authors: A. Asambe

Abstract:

A study was conducted to determine the level of compliance with sanitary measures in piggeries, and awareness and risk factors of African swine fever in Benue State, Nigeria. Questionnaires were distributed to 74 respondents consisting of piggery owners and attendants in different piggeries across 12 LGAs to collect data for this study. Sanitary measures in piggeries were observed to be generally very poor, though respondents admitted being aware of ASF. Piggeries located within a 1 km radius of a slaughter slab (OR=9.2, 95% CI - 3.0-28.8), piggeries near refuse dump sites (OR=3.0, 95% CI - 1.0-9.5) and piggeries where farm workers wear their work clothes outside of the piggery premises (OR=0.2, 95% CI - 0.1-0.7) showed higher chances of ASFV infection and were significantly associated (p < 0.0001), (p < 0.05) and (p < 0.01), and were identified as potential risk factors. The study concluded that pigs in Benue State are still at risk of an ASF outbreak. Proper sanitary and hygienic practices is advocated and emphasized in piggeries, while routine surveillance for ASFV antibodies in pigs in Benue State is strongly recommended to provide a reliable reference data base to plan for the prevention of any devastating ASF outbreak.

Keywords: African swine fever, awareness, piggery, risk factors, sanitary measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
48 Computer Aided Design of Reshaping Process of Circular Pipes into Square Pipes

Authors: Parviz Alinezhad, Ali Sanati, Koorosh Naser Momtahen

Abstract:

Square pipes (pipes with square cross sections) are being used for various industrial objectives, such as machine structure components and housing/building elements. The utilization of them is extending rapidly and widely. Hence, the out-put of those pipes is increasing and new application fields are continually developing. Due to various demands in recent time, the products have to satisfy difficult specifications with high accuracy in dimensions. The reshaping process design of pipes with square cross sections; however, is performed by trial and error and based on expert-s experience. In this paper, a computer-aided simulation is developed based on the 2-D elastic-plastic method with consideration of the shear deformation to analyze the reshaping process. Effect of various parameters such as diameter of the circular pipe and mechanical properties of metal on product dimension and quality can be evaluated by using this simulation. Moreover, design of reshaping process include determination of shrinkage of cross section, necessary number of stands, radius of rolls and height of pipe at each stand, are investigated. Further, it is shown that there are good agreements between the results of the design method and the experimental results.

Keywords: Circular Pipes, Square Pipes, Shear Deformation, Reshaping Process, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
47 Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus

Authors: Manal H. Saleh

Abstract:

A numerical study has been carried out to investigate the heat transfer by natural convection of nanofluid taking Cu as nanoparticles and the water as based fluid in a three dimensional annulus enclosure filled with porous media (silica sand) between two horizontal concentric cylinders with 12 annular fins of 2.4mm thickness attached to the inner cylinder under steady state conditions. The governing equations which used are continuity, momentum and energy equations under an assumptions used Darcy law and Boussinesq-s approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7. The parameters affected on the system are modified Rayleigh number (10 ≤Ra*≤ 1000), fin length Hf (3, 7 and 11mm), radius ratio Rr (0.293, 0.365 and 0.435) and the volume fraction(0 ≤ ¤ò ≤ 0 .35). It was found that the average Nusselt number depends on (Ra*, Hf, Rr and φ). The results show that, increasing of fin length decreases the heat transfer rate and for low values of Ra*, decreasing Rr cause to decrease Nu while for Ra* greater than 100, decreasing Rr cause to increase Nu and adding Cu nanoparticles with 0.35 volume fraction cause 27.9% enhancement in heat transfer. A correlation for Nu in terms of Ra*, Hf and φ, has been developed for inner hot cylinder.

Keywords: Annular fins, laminar free convection, nanofluid, porous media, three dimensions horizontal annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
46 Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design

Authors: Ali Raad Hassan

Abstract:

In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed.

Keywords: involute, trochoid, pressure angle, profile shift factor, natural frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
45 Influence of Pile Radius on Inertial Response of Pile Group in Fundamental Frequency of Homogeneous Soil Medium

Authors: Faghihnia Torshizi Mostafa, Saitoh Masato

Abstract:

An efficient method is developed for the response of a group of vertical, cylindrical fixed-head, finite length piles embedded in a homogeneous elastic stratum, subjected to harmonic force atop the pile group cap. Pile to pile interaction is represented through simplified beam-on-dynamic-Winkler-foundation (BDWF) with realistic frequency-dependent springs and dashpots. Pile group effect is considered through interaction factors. New closed-form expressions for interaction factors and curvature ratios atop the pile are extended by considering different boundary conditions at the tip of the piles (fixed, hinged). In order to investigate the fundamental characteristics of inertial bending strains in pile groups, inertial bending strains at the head of each pile are expressed in terms of slenderness ratio. The results of parametric study give valuable insight in understanding the behavior of fixed head pile groups in fundamental natural frequency of soil stratum.

Keywords: Winkler-foundation, fundamental frequency of soil stratum, normalized inertial bending strain, harmonic excitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079