
 

 

 
Abstract—An efficient method is developed for the response of a 

group of vertical, cylindrical fixed-head, finite length piles embedded 
in a homogeneous elastic stratum, subjected to harmonic force atop 
the pile group cap. Pile to pile interaction is represented through 
simplified beam-on-dynamic-Winkler-foundation (BDWF) with 
realistic frequency-dependent springs and dashpots. Pile group effect 
is considered through interaction factors. New closed-form 
expressions for interaction factors and curvature ratios atop the pile 
are extended by considering different boundary conditions at the tip 
of the piles (fixed, hinged). In order to investigate the fundamental 
characteristics of inertial bending strains in pile groups, inertial 
bending strains at the head of each pile are expressed in terms of 
slenderness ratio. The results of parametric study give valuable 
insight in understanding the behavior of fixed head pile groups in 
fundamental natural frequency of soil stratum. 

 
Keywords—Winkler-foundation, fundamental frequency of soil 

stratum, normalized inertial bending strain, harmonic excitation. 

I. INTRODUCTION 

HE deformations of a structure during earthquake 
generate inertial forces atop the pile foundation systems. 

Investigation on lateral response of single piles and pile 
groups due to induced inertial forces has attracted a vast 
amount of researches. Various types of techniques have been 
proposed to investigate the behavior of pile-soil-structure 
under dynamic loads in recent years, such as continuum 
approach [1], [2], boundary element method [3], [4] finite 
element solutions [5], [6]. A simplified approach was also 
presented by [7] for calculating the dynamic response and 
internal forces caused by harmonic loading atop the pile cap. 
That method is based on generalized Winkler model in 
conjunction with a three-step wave interference solution for 
pile to pile effect. Although those studies had led to sufficient 
understanding in the behavior of inertial response of pile-soil-
structure systems, the predictions of inertial bending remain 
questionable. For design purposes, it is necessary to determine 
pile radius because the size of the radius directly affects the 
bending stiffness of the pile ܫܧ. When inertial loading is 
significant, increasing the pile radius is a proper technique to 
decrease bending strains. Saitoh [8] proposed a closed form 
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formula in order to obtain optimal radius of vertical, 
cylindrical fixed-head single pile embedded in a homogeneous 
elastic soil layer and supported by rotationally compliant 
bedrock. Particularly the frequency of horizontal excitation 
was assumed to be equal to the natural frequency of the soil 
medium. The variations in normalized inertial bending strains 
as a function of the slenderness ratio ܪ/ݎ were investigated. 
Despite this effort, research on the influence of the pile radius 
on bending strains in soil-pile group systems, where inertial 
interaction is predominant, has not reported yet, therefore to 
establish criteria for optimal pile radius in pile group, 
variations of inertial bending strains with respect to pile radius 
should be quantified in a systematic way. This paper attempts 
to offer comprehensive relations between radius and the 
inertial bending strains at the head of vertical, cylindrical pile 
group embedded in a homogeneous soil layer, pile group is 
assumed to be under harmonic loading at the head, and 
different constraint conditions at the pile group tip (hinged and 
fixed) is considered. Analytical results will be assessed 
through BDWF model. Mylonakis and Nikolaou [9] implied 
that, in dominance of inertial responses in fundamental 
frequency of soil-pile system, the inertial bending would be 
significant, particularly at upper part of the piles. Therefore, to 
get insight into the physics of the problem and basic 
characteristics, it would be beneficial to investigate inertial 
bending strains in the fundamental frequency of soil layer. 

A. Analytical Solution of Kinematic Bending of Pile Group  

The soil-pile-structure system is shown in Fig. 1: a group of 
vertical cylindrical piles of length L, diameter d, pile cross-
sectional moment of inertia ܫ௣ , mass density ߩ௣ ,	mass per 
unit length of the piles ݉௣ and Young’s modulus ܧ௣ is 
embedded in a homogeneous soil layer of thickness ܪሺൌ  ሻܮ
resting on a rigid base. Soil is modelled as a linear elastic 
material of Poisson’s ratio	߭, mass density ߩ௦, frequency-
independent material damping ߚ௦, expressed through a 
complex-valued shear modulus ܩ௦∗ ൌ ௦ሺ1ܩ ൅  ௦ሻ and as aߚ2݅
Winkler foundation resisting the lateral pile motion by 
continuously-distributed frequency-dependent linear springs 
݇௫ and dashpots ܿ௫ along the pile length. Based on the latter 
model, the energy loses due to radiation of waves and due to 
hysteretic dissipation. The pile group is excited by harmonic 
horizontal load at the head. The frequency of horizontal 
excitation is assumed to be equal to the natural frequency of 
the soil medium. 
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Fig. 1 Problem considered and different boundary conditions at pile head and tip 
 

B. The Dynamic Winkler Modulus in Fundamental 
Frequency of Soil Layer 

In this study, Winkler parameters of Mylonakis [10] which 
are efficient to capture the fundamental frequency effects in 
soil layer are utilized as: 
 

݇௫∗ሺݖ, ߱ሻ ൌ ଶݏ∗௦ܩߨ
ସ௄భሺ௤ሻ௄భሺ௦ሻା௦௄భሺ௤ሻ௄బሺ௦ሻା௤௄బሺ௤ሻ௄భሺ௦ሻ

௤௄బሺ௤ሻ௄భሺ௦ሻା௦௄భሺ௤ሻ௄బሺ௦ሻା௤௦௄బሺ௤ሻ௄బሺ௦ሻ
 (1) 

 

s ൌ
ଵ

ଶ
ටܽ௖ଶ െ

௔బ
మ

ଵାଶ௜ఉೞ
			                              (2a) 

 

ݍ ൌ ݏ
ݑߟ

                                       (2b) 

 

௨ߟ ൌ ට
ଶିజೞ
ଵିజೞ

                                       (3) 

 
ܽ௖ ൌ ܾ௨݀                                        (4a) 

 

	ܾ௨ ൌ
׬ ሺ

೏ഖሺ೥ሻ
೏೥

ሻమ
ಹ
బ ௗ௭

׬ ሺఞሺ௭ሻሻమ
ಹ
బ ௗ௭

                                   (4b) 

 
In (2a), ܽ଴ ൌ ߱݀/ ௦ܸ denotes the dimensionless frequency 

factor. The ܽ௖ stands for a dimensionless fundamental 
frequency (termed “cutoff frequency) below which no waves 
can be emanate from the pile-soil interface to propagate 
horizontally in soil medium.	݇௫∗ሺݖ, ߱ሻ	in (1) constitutes the 
lateral local dynamic impedance of the Winkler foundation. 
߯ሺݖሻ is the shape function to describe the lateral vibrations 
along the pile length. For simplicity, a sinusoidal shape 
function is selected, in which the cutoff frequency coincides 
with the fundamental natural frequency of homogenous soil 
layer in shearing vibrations. 

 

߯ሺݖሻ ൌ cos ቀ
గ௭

ଶு
ቁ                               (5a) 

 

ܾ௨ ൌ
గమ

ସுమ
                                     (5b) 

 

	ܽ௖ ൌ
గ௥

ு
                                      (5c) 

1. Deflection of Active Pile (Source Pile) 

Let ݑଵଵሺݖ, ሻݐ ൌ  ሻ݁௜ఠ೒௧ denote the harmonic pileݖଵଵሺݑ
deflection. With reference to Fig. 1, dynamic equilibrium 
under harmonic steady-state conditions yields: 
 

ௗర௨భభሺ௭ሻ

ௗ௭ర
൅ ሻݖଵଵሺݑସߣ4 ൌ 0                          (6) 

 

ߣ ൌ ሺ
௞ೣା௜௖ೣఠ೒ି௠೛ఠ೒మ

ସா೛ூ೛
ሻଵ/ସ                          (7) 

 
where ߣ	 is the characteristics wave number governing the 
attenuation functions of pile displacement with depth. The 
solution will yield harmonic horizontal deflection of the active 
pile ݑூଵଵሺݖ, ሻݐ ൌ  ሻ݁௜ఠ೒௧  in terms of inertial integrationݖூଵଵሺݑ
constants ܣூଵଵ, ,ூଵଵܤ ,ூଵଵܥ ூܦ

ଵଵ	which are dependent on the 
boundary conditions. 

 
ሻݖூଵଵሺݑ ൌ ݁ఒ௭൫ܣூଵଵܿݏ݋ሺݖߣሻ ൅ ሻ൯ݖߣሺ݊݅ݏூଵଵܤ ൅ ݁ିఒ௭൫ܥூଵଵܿݏ݋ሺݖߣሻ ൅

ூܦ
ଵଵ݊݅ݏሺݖߣሻ൯ (8) 

2. Attenuation of Soil Displacement Away from Active Pile 
(Source Pile) 

This step starts by calculating the difference between single 
pile deflections and free-field soil displacements, ∆ݑଵଵ .In 
inertial loading, this difference is equal to the deflection of the 
active single pile:	∆ݑଵଵ ൌ  ଵଵ, new cylindrical waves emanateݑ
from the periphery of the vibrating active pile while spreading 
outward in all directions. In this study, attenuation functions of 
Mylonakis [10] are used. 

 

߰ଶଵሺݏ, 0ሻ ൌ ሺଶ௦
ௗ
ሻିଵ/ଶ expሾെ ቀ௦

ௗ
െ ଵ

ଶ
ቁටܽ௖ଶ െ

௔೒బ
మ

ଵାଶ௜ఉೞ
ሿ         (9) 

 

߰ଶଵ ቀݏ,
గ

ଶ
ቁ ൌ ሺଶ௦

ௗ
ሻିଵ/ଶexp	ሾെቀ௦

ௗ
െ ଵ

ଶ
ቁ ௨ିଵටܽ௖ଶߟ െ

௔೒బ
మ

ଵାଶ௜ఉೞ
ሿ   (10) 
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߰ଶଵሺݏ, ሻߠ ൌ ߰ଶଵሺݏ, 0ሻ cosଶሺߠሻ ൅ ߰ଶଵ ቀݏ,
గ

ଶ
ቁ sinଶሺߠሻ    (11) 

 
According to previous model, at a distance ݏ from the 

vibrating pile and angle ߠ from the direction of loading in Fig. 
2, the displacement field can be expressed as:  

 
,ݏ௦ሺݑ ,ݖ ሻߠ ൌ ߰ଶଵሺݏ, ଵଵݑ∆ሻߠ ൌ ߰ଶଵሺݏ,  ሻ      (12)ݖூଵଵሺݑሻߠ

 

where ݑ௦ሺݏ, ,ݖ ሻߠ ൌ horizontal soil displacement generated by 

active pile (source pile); ߰ଶଵሺݏ, 0) and ߰ଶଵ ቀݏ,
గ

ଶ
ቁ ൌ attenuation 

functions corresponding to wave travelling along and 
perpendicular to the direction of loading; ߠ= angle between 
the direction of loading and the line connecting the pile 
centers; ܽ௚଴ ൌ ݎߨ

ൗܪ  is dimensionless frequency associated 
with the fundamental frequency of the soil layer. 

 

Fig. 2 Schematic illustration for computing influence of active pile on adjacent passive pile 
 

3. Interaction of the Passive Pile (Receiver) with Arriving 
Waves 

The diffracted wave field generated by the active pile in (8) 
propagates to strike the passive pile at a distance ݏ from the 
active pile. The passive pile does not exactly follow the 
diffracted wave field, and its inertial and flexural rigidity tends 
to resist this induced displacement. Therefore, the result of this 
strike will be a modified motion at soil-passive pile interface. 
In order to determine the additional displacement that passive 
pile experiences, we consider the dynamic equilibrium of an 
infinitesimal pile segment which yields the following equation 
governing the deflection ݑଶଵሺݖሻ of the passive pile. 
 

ௗర௨మభሺ௭ሻ

ௗ௭ర
൅ ሻݖଶଵሺݑସߣ4 ൌ

௞ೣା௜ఠ೒௖ೣ
ா೛ூ೛

߰ଶଵሺݏ,  ሻ      (13)ݖூଵଵሺݑሻߠ

 
when the active pile is excited by the lateral harmonic loading 
,ݖ଴ሺݑ ሻݐ ൌ ଴݁ݑ

௜ఠ೒௧ at the head, the solution of (13) will give us 
the additional inertial displacement of the passive pile. This 
displacement consists of two parts; ሺݑூଶଵሺݖሻሻଵ as homogeneous 
solution and ሺݑூଶଵሺݖሻሻଶ as particular solution. 
 

ሻݖ௄ଶଵሺݑ ൌ ሺݑூଶଵሺݖሻሻଵ ൅ ሺݑூଶଵሺݖሻሻଶ            (14) 
 

ሺݑூଶଵሺݖሻሻଵ ൌ ݁ఒ௭൫ܣଶଵ
ூ cosሺݖߣሻ ൅ ଶଵܤ

ூ sinሺݖߣሻ൯ ൅  

݁ିఒ௭൫ܥଶଵ
ூ cosሺݖߣሻ ൅ ଶଵܦ

ூ sinሺݖߣሻ൯                  (15) 
 

ሺݑூଶଵሺݖሻሻଶ ൌ
௞ೣା௜௖ೣఠ೙
ଵ଺ா೛ூ೛ఒయ

߰ଶଵሺݏ, ᇱܣఒ௭ሺ݁ݖሻሾߠ cosሺݖߣሻ ൅  

ᇱܤ sinሺݖߣሻሻ ൅ ᇱܥఒ௭ሺି݁ݖ cosሺݖߣሻ ൅ ᇱܦ sinሺݖߣሻሻሿ       (16) 
 

ᇱܣ ൌ െሺܣଵଵூ ൅ ଵଵூܤ ሻ                            (17a) 
 

ᇱܤ ൌ ሺܣଵଵூ െ ଵଵூܤ ሻ                              (17b) 
 

ᇱܥ ൌ ሺܥଵଵ
ூ െ ଵଵܦ

ூሻ                            (17c) 
 

ᇱܦ ൌ ሺܥଵଵ
ூ ൅ ଵଵܦ

ூሻ                            (17d) 
 

In particular solution, (16), ܣᇱ, ,ᇱܤ  ᇱ are integrationܦ and	ᇱܥ
constants in which ܣଵଵூ , ଵଵூܤ , ଵଵܥ

ூ and ܦଵଵ
ூ are known inertial 

integration constants (i.e. they have already been determined 
from the boundary conditions of the active pile). In 
homogeneous solution ܣଶଵூ , ଶଵூܤ , ଶଵܥ

ூ, and ܦଶଵ
ூ are inertial 

integration constants that should be determined from the 
boundary conditions of the passive pile.  

4. Inertial Interaction Factor 

The inertial interaction factor ߙூଶଵሺݏ,  ሻ between the activeߠ
pile (pile 1) and the passive pile (pile 2) is defined as the 
response of the degree of freedom (DOF) i atop pile 2 due to 
displacement (or rotation) of the jth DOF of pile 1 caused by 
its own load. In this study, pile cap group is assumed to be 
rotationally fixed, therefore inertial interaction factor between 
active pile (pile 1) and passive pile (pile 2) can be simplified 
as: 

 

,ݏூଶଵሺߙ ሻߠ ൌ
௨మభ
಺ ሺ଴ሻ

௨భభ
಺ ሺ଴ሻ

ൌ ஺మభ
಺ ା஻మభ

಺

஺భభ
಺ ା஻భభ

಺                   (18) 

C. Inertial Response of Pile-Soil Systems 

A pile group with identical N piles was considered to be 
connected by a rigid cap restricted against rotation and 
subjected to lateral vibration ݑሺݐሻ ൌ ܷሺீሻ݁௜ఠ೒௧ at the head of 
pile group. The total horizontal response of N pile at the head 
may be calculated as the sum of the following components: (1) 
The horizontal displacement at the head of single (solitary) 
pile due to its own head loading with the amplitudes 

ଵܲ	, …	 , ேܲ; (2) The additional horizontal displacement at the 
head of the pile is transmitted from the other N-1 piles due to 
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their head-loading with the amplitudes ଵܲ …	 , ேܲ. When the 
horizontal head displacement of the foundation is expressed 
by ܷሺீሻ, the compatibility condition can be described by 
 

ܷሺீሻ ൌ ∑ ூ௜௝ߙ	
௉ೕ

௞ೣ
ሺభሻ			

ே
௝ୀଵ                         (19) 

 
∑ ௝ܲ
ே
௝ୀଵ ൌ ܸ	                                 (20) 

 
This system of equations can be set into a matrix form as 
 

ۏ
ێ
ێ
ێ
1ۍ െߙூଵଵ
1 െߙூଵଵ

െߙூଵଶ … െߙூଵே
െߙூଵଵ … െߙூଶே

⋮ ⋮
1
0

െߙூேଵ
1

⋮ ⋮					 ⋮					
െߙூேଶ
1

…
…

െߙூேே
1 ے

ۑ
ۑ
ۑ
ې

ە
ۖۖ

۔

ۖۖ

ܷۓ
ሺீሻ

௉భ
௞ೣ

ሺభሻ

௉మ
௞ೣ

ሺభሻ

⋮
௉ಿ

௞ೣ
ሺభሻ ۙ
ۖۖ

ۘ

ۖۖ

ۗ

ൌ

ە
ۖ
۔

ۖ
ۓ
0
0
⋮
0
୚

௞ೣ
ሺభሻۙ
ۖ
ۘ

ۖ
ۗ

      (21) 

 
where ߙூ௜௝ are the interaction factors for inertial loading in the 

case where ݅ ൌ ூ௜௝ߙ  ݆ ൌ 1 and ݇௫
ሺଵሻ is the dynamic stiffness at 

the head of single pile. 

1. Inertial Curvature Ratios 

(1) Inertial curvature ratio of the active pile is defined as the 
ratio of the active pile head curvature as a single solitary pile 
due to its own inertial head loading to the active pile-top 
displacement [11]; (2) Inertial curvature ratio of the passive 
pile is defined as the ratio of the passive pile head curvature 
due to the additional inertial head displacement of the passive 
pile to the active pile-top displacement due to the inertial head 
loading [11]; 

 

ଵଵூߚ ൌ
௨೔೔
಺ ᇱᇱሺ଴ሻ

௨಺೔೔ሺ଴ሻ
ൌ ଶఒమሺ஻భభ

಺ି஽భభ
಺ሻ

஺భభ
಺ା஼భభ

಺                         (22) 

 

ଶଵூߚ ൌ
௨೔ೕ
಺ ᇱᇱሺ଴ሻ

௨಺ೕೕሺ଴ሻ
ൌ

మഊమ

య
ሺଷ൫஻మభ

಺ି஽మభ
಺൯ିଶఈమభሺ஻భభ

಺ି஽భభ
಺ሻሻ

஺భభ
಺ା஼భభ

಺           (23) 

 
Finally by using superposition method, the total curvature 

can be expressed as 
 

௜ܷ
ᇱᇱሺ0ሻ ൌ ∑ ௜௝ߚ

ூ ௉ೕ

௞ೣ
ሺభሻ

ே
௝ୀଵ                           (24) 

 

൞

ଵܷ
ᇱᇱሺ0ሻ

ܷଶ
ᇱᇱሺ0ሻ
⋮

ܷே
ᇱᇱሺ0ሻ

ൢ ൌ

ۏ
ێ
ێ
ଵଵߚۍ

ூ ଵଶߚ
ூ … ଵேߚ

ூ

ଶଵߚ
ூ

⋮
ேଵߚ
ூ

ଶଶߚ
ூ … ଶேߚ

ூ

⋮ 				⋮	 ⋮		
ேଶߚ
ூ … ேேߚ

ூ ے
ۑ
ۑ
ې

ە
ۖ
۔

ۖ
ۓ

௉భ
௞ೣ

ሺభሻ

௉మ
௞ೣ

ሺభሻ

⋮
௉ಿ

௞ೣ
ሺభሻۙ
ۖ
ۘ

ۖ
ۗ

                (25) 

 

Based on (21), vector of forces ቄ ௉೔
௞ೣ

ሺభሻቅ can be obtained as 

 

ቄ ௉೔
௞ೣ

ሺభሻቅ ൌ ሼߛ௝ሽ
௏

௞ೣ
ሺభሻ                                (26) 

 
Vector ሼߛ௝ሽ is displacement group factor which can be 

obtained after solving (21), ݇௫
ሺଵሻ is the horizontal stiffness at 

the head of hinged and end-bearing pile respectively and 
details on that are given in [12]. By replacing vector forces in 
(25), bending strains can be calculated therefore bending 
moments at the head of each pile in the group in vector form 
can be calculated as following expression 
 

ሼߝ௣௜
ூ ሺ0ሻሽ ൌ ሼെ ௗ

ଶ

ௗమ௎೔ሺ௭ୀ଴ሻ

ௗ௭మ
ሽ		                      (27) 

 

Next, the inertial bending strain ߝ௣௜
ூ  at the head of the pile is 

normalized with respect to a mean shear strain of the soil 
medium ߛ௦ as the same treatment in Saitoh [8]. Therefore, the 
closed form formula of the normalized bending strains can be 
written as follows 
 

൜
ఌ೛೔
಺ ሺ଴ሻ

ఊೞ
ൠ ൌ ሾߚ௜௝

ூ ሿሼߛ௝ሽ
௙௥

ഏ
ఴ
ሺ
ೝ
ಹ
ሻయሺఒுሻிሺఒுሻ

                      (28) 

 

ሻܪߣሺܨ ൌ

ە
ۖ
۔

ۖ
4ۓ

cosሺ2ܪߣሻ ൅ coshሺ2ܪߣሻ
െ sinሺ2ܪߣሻ ൅ sinhሺ2ܪߣሻ

																															 hinged

4
sinሺ2ܪߣሻ ൅ sinhሺ2ܪߣሻ

cosሺ2ܪߣሻ ൅ coshሺ2ܪߣሻ െ 2
															end െ bearing

 (29) 

 
Factor ݂ݎ is a dimensionless factor which is related to the 

effect of the lateral load relative to the deformation of the soil 
layer. This factor is a complex value since there is a phase lag 
between lateral load V, and the mean shear strain of the soil 
medium ߛ௦, therefore this factor can be rewritten again by the 
following formula: 
 

ݎ݂ ൌ  ௜ఝೝ                                  (30)݁ݎܨ
 

ݎܨ ൌ ฬ
௏

ா೛ఊೞுమ
ฬ                                  (31) 

 
The factor ݎܨ can be calculated by estimating the maximum 

values of the lateral load V and the mean shear strain ߛ௦ . The 
determination of phase lag ߮௥ is difficult because there have 
been few investigations into the phase lag between the lateral 
load ܸ and mean shear strain ߛ௦. In this study, it is assumed 
that the phase lag is equal to zero. 

II. NUMERICAL RESULTS 

In order to examine the applicability of the preceding 
expressions for the normalized inertial bending strains, two 
cases of fixed head piles (2x2, 3x3) will be studied. Here, 
special attention is paid to the effects of slenderness ratio ܪ/ݎ, 
spacing and the number of piles in the group, different 
boundary conditions at the tip (fixed or hinged), and the 
results are compared with the single pile’s result. The 
normalized inertial bending strains in single are also divided 
by N the number of piles in each case of pile groups to be 
comparable with pile groups’ results. Results of parametric 
studies indicate that, in both cases of end-bearing and hinged 
pile groups, normalized inertial bending strains show almost 
the same values as single pile’s results. 
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Fig. 3 (2x2) and (3x3) pile groups under study 
 

  

Fig. 4 Normalized inertial bending strain of (2x2) hinged pile group with respect to single pile ሺ
ఘ೛
ఘೞ
ൌ 1.43, ߭ ൌ 0.4	, ߚ ൌ 0.05	,

ா೛
ாೞ
ൌ 1000ሻ 

 

 

Fig. 5 Normalized inertial bending strain of (2x2) end-bearing pile group with respect to single pile ሺ
ఘ೛
ఘೞ
ൌ 1.43, ߭ ൌ 0.4	, ߚ ൌ 0.05	,

ா೛
ாೞ
ൌ

1000ሻ 
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Fig. 6 Normalized inertial bending strain of (3x3) hinged and end-bearing pile group with respect to single pile ሺ
ఘ೛
ఘೞ
ൌ 1.43, ߭ ൌ 0.4	, ߚ ൌ

0.05	,
ா೛
ாೞ
ൌ 1000ሻ 

 

  

Fig. 7 Normalized inertial bending strain of (3x3) hinged and end-bearing pile group with respect to single pile 
 ሺ
ఘ೛
ఘೞ
ൌ 1.43, ߭ ൌ 0.4	, ߚ ൌ 0.05	,

ா೛
ாೞ
ൌ 1000ሻ 

 
III. CONCLUSION 

An efficient method has been extended to compute the 
bending strains of fixed-head pile groups of finite length 
embedded in a homogeneous soil layer, where inertial 
interaction dominates. This method allows the inertial bending 
strains to be obtained in closed form formula while using 
dynamic Winkler model in conjunction with an extension to 
three dimensional of Novak’s plain-strain model. This model 
is free of the drawbacks of the two dimensional plain-strain 
model reproducing cutoff frequency of the soil-pile system. 
Pile group effect is considered through interaction factors, and 
the inertial bending strains are normalized with respect to a 
mean shear strain of a soil stratum ߛ௦, then the variations of 
normalized inertial bending strains against slenderness ratio 
 are investigated, which gives valuable insight into the ܪ/ݎ
characteristics of the inertial bending strains in pile groups. 
Homogeneous solutions are considered in active and passive 
piles deflections for appropriately considering various 
boundary conditions when estimating bending strains. 

Solutions for pile group response are performed in 
fundamental frequency of soil strata.  
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