{"title":"Effects of Thread Dimensions of Functionally Graded Dental Implants on Stress Distribution","authors":"Kaman M. O., Celik N.","volume":78,"journal":"International Journal of Mechanical and Mechatronics Engineering","pagesStart":1313,"pagesEnd":1320,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/6679","abstract":"In this study, stress distributions on dental implants\r\nmade of functionally graded biomaterials (FGBM) are investigated\r\nnumerically. The implant body is considered to be subjected to axial\r\ncompression loads. Numerical problem is assumed to be 2D, and\r\nANSYS commercial software is used for the analysis. The cross\r\nsection of the implant thread varies as varying the height (H) and the\r\nwidth (t) of the thread. According to thread dimensions of implant\r\nand material properties of FGBM, equivalent stress distribution on\r\nthe implant is determined and presented with contour plots along\r\nwith the maximum equivalent stress values. As a result, with\r\nincreasing material gradient parameter (n), the equivalent stress\r\ndecreases, but the minimum stress distribution increases. Maximum\r\nstress values decrease with decreasing implant radius (r). Maximum\r\nvon Mises stresses increases with decreasing H when t is constant.\r\nOn the other hand, the stress values are not affected by variation of t\r\nin the case of H = constant.","references":"[1] F. Watari, A. Yokoyama, F. Saso, M. Uo, T. Kawasaki, \"Fabrication\r\nand properties of functionally graded dental implant\" Composites Part\r\nB, (1997), pp. 5-11.\r\n[2] J. Yang, H.J. Xiang, \"A three-dimensional finite element study on the\r\nbiomechanical behavior of an FGBM dental implant in surrounding\r\nbone\" Journal of Biomechanics, 2007, pp. 2377-2385.\r\n[3] F. Watari, A. Yokoyama, F. Saso, M. Uo, H. Matsuno, T. Kawasaki,\r\n\"Imaging of gradient structure of titanium\/apatite functionally graded\r\ndental implant\" Journal of Japanese Institute of Metals, 1998, pp.\r\n1095-1101.\r\n[4] F. Watari, A. Yokoyama, M. Omori, T. Hirai, H. Kondo, M. Uo, T.\r\nKawasaki, \"Biocompatibility of materials and development to\r\nfunctionally graded implant for bio-medical application\" Composites\r\nScience and Technology, 2004, pp. 893-908.\r\n[5] F. Wang, H.P. Lee, C. Lu, \"Thermal-mechanical study of functionally\r\ngraded dental implants with the finite element method\" Journal of\r\nBiomedical Materials Research Part A, 2006, pp. 146-158.\r\n[6] T.A. Enab, \"A comparative study of the performance of metallic and\r\nFGM tibia tray components in total knee replacement joints\"\r\nComputational Materials Science, 2012, pp. 94-100.\r\n[7] H.S. Hedia, \"Design of functionally graded dental implant in the\r\npresence of cancellous bone\" Journal of Biomedical Materials\r\nResearch Part B: Applied Biomaterials, 2005, pp.74-80.\r\n[8] D. Lin, Q. Li, W. Li, M. Swain, \"Bone remodeling induced by dental\r\nimplants of functionally graded materials\" Journal of Biomedical\r\nMaterials Research Part B: Applied Biomaterials, 2009, pp. 430-438.\r\n[9] A. Sadollah, A. Bahreininejad, \"Optimum gradient material for a\r\nfunctionally graded dental implant using metaheuristic algorithms\"\r\nJournal of the Mechanical Behavior of Biomedical Materials, pp. 2011,\r\n1384-1395.\r\n[10] D. Lin, Q. Li, W. Li, S. Zhou, M.V. Swain, \"Design optimization of\r\nfunctionally graded dental implant for bone remodeling\" Composites:\r\nPart B, 2009, pp. 668-675.\r\n[11] ANSYS 12.1 Academic Teaching Introductory Help Menu, 2009\r\n[12] C.E. Rousseau, H.V. Tippur, \"Compositionally graded materials with\r\ncracks normal to the elastic gradient\" Acta Materialia, 2000, pp. 4021-\r\n4033.\r\n[13] M.T. Tilbrook, R.J. Moon, M. Hoffman, \"Finite element simulations of\r\ncrack propagation in functionally graded materials under flexural\r\nloading\" Engineering Fracture Mechanics, 2005, pp.2444-2467.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 78, 2013"}