Search results for: work based learning
13427 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation
Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori
Abstract:
The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.Keywords: Clustering, edges, feature points, landmark selection, X-Means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81913426 An Improved Scheduling Strategy in Cloud Using Trust Based Mechanism
Authors: D. Sumathi, P. Poongodi
Abstract:
Cloud Computing refers to applications delivered as services over the internet, and the datacenters that provide those services with hardware and systems software. These were earlier referred to as Software as a Service (SaaS). Scheduling is justified by job components (called tasks), lack of information. In fact, in a large fraction of jobs from machine learning, bio-computing, and image processing domains, it is possible to estimate the maximum time required for a task in the job. This study focuses on Trust based scheduling to improve cloud security by modifying Heterogeneous Earliest Finish Time (HEFT) algorithm. It also proposes TR-HEFT (Trust Reputation HEFT) which is then compared to Dynamic Load Scheduling.Keywords: Software as a Service (SaaS), Trust, Heterogeneous Earliest Finish Time (HEFT) algorithm, Dynamic Load Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219613425 Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm
Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag
Abstract:
This paper presents a new approach for the prob-ability density function estimation using the Support Vector Ma-chines (SVM) and the Expectation Maximization (EM) algorithms.In the proposed approach, an advanced algorithm for the SVM den-sity estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the para-meters of the kernel function which is used by the SVM algorithm,the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.
Keywords: Density Estimation, SVM, Learning Algorithms, Parameters Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250613424 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador
Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito
Abstract:
For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.Keywords: Hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74413423 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification
Authors: C. Gunavathi, K. Premalatha
Abstract:
Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.
Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453913422 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording
Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy
Abstract:
Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232913421 The Impacts of Off-Campus Students on Local Neighbourhood in Malaysia
Authors: Dasimah Bt Omar, Faizul Abdullah, Fatimah Yusof, Hazlina Hamdan, Naasah Nasrudin, Ishak Che Abullah
Abstract:
The impacts of near-campus student housing, or offcampus students accommodation cannot be ignored by the universities and as well as the community officials. Numerous scholarly studies, have highlighted the substantial economic impacts either; direct, indirect or induced, and cumulatively the roles of the universities have significantly contributed to the local economies. The issue of the impacts of off-campus student rental housing on neighbourhoods is one that has been of long-standing but increasing concern in Malaysia. Statistically, in Malaysia, there was approximately a total of 1.2 - 1.5 million students in 2009. By the year 2015, it is expected that 50 per cent of 18 to 30 year olds active population should gain access to university education, amounting to 120,000 yearly. The objectives of the research are to assess the impacts off-campus students on the local neighbourhood and specifically to obtain information on the living and learning conditions of off-campus students of Universiti Teknologi MARA Shah Alam, Malaysia. It is also to isolate those factors that may impede the successful learning so that priority can be given to them in subsequent policy implementations and actions by government and the higher education institutions.Keywords: off-campus students, neighbourhood, impacts, living and learning conditions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441213420 Predicting the Impact of the Defect on the Overall Environment in Function Based Systems
Authors: Parvinder S. Sandhu, Urvashi Malhotra, E. Ardil
Abstract:
There is lot of work done in prediction of the fault proneness of the software systems. But, it is the severity of the faults that is more important than number of faults existing in the developed system as the major faults matters most for a developer and those major faults needs immediate attention. In this paper, we tried to predict the level of impact of the existing faults in software systems. Neuro-Fuzzy based predictor models is applied NASA-s public domain defect dataset coded in C programming language. As Correlation-based Feature Selection (CFS) evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them. So, CFS is used for the selecting the best metrics that have highly correlated with level of severity of faults. The results are compared with the prediction results of Logistic Models (LMT) that was earlier quoted as the best technique in [17]. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provide a relatively better prediction accuracy as compared to other models and hence, can be used for the modeling of the level of impact of faults in function based systems.Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, Software Faults, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135613419 Comparison of Valuation Techniques for Bone Age Assessment
Authors: N. Olarte L, A. Rubiano F, A. Mejía F.
Abstract:
This comparison of valuation techniques for bone age assessment is a work carried out by the Telemedicine Research Group of the Military University - TIGUM, as a preliminary to the Design and development a treatment system of hand and wrist radiological images for children aged 0-6 years to bone age assessment . In this paper the techniques mentioned for decades have been the most widely used and the statistically significant. Althought, initially with the current project, it wants to work with children who have limit age, this comparison and evaluation techniques work will help in the future to expand the study subject in the system to bone age assessment, implementing more techniques, tools and deeper analysis to accomplish this purpose.Keywords: Atlas, Bone Age Assessment, Hand and Wrist Radiograph, Image Processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251213418 Design of a Neural Networks Classifier for Face Detection
Authors: F. Smach, M. Atri, J. Mitéran, M. Abid
Abstract:
Face detection and recognition has many applications in a variety of fields such as security system, videoconferencing and identification. Face classification is currently implemented in software. A hardware implementation allows real-time processing, but has higher cost and time to-market. The objective of this work is to implement a classifier based on neural networks MLP (Multi-layer Perceptron) for face detection. The MLP is used to classify face and non-face patterns. The systm is described using C language on a P4 (2.4 Ghz) to extract weight values. Then a Hardware implementation is achieved using VHDL based Methodology. We target Xilinx FPGA as the implementation support.Keywords: Classification, Face Detection, FPGA Hardware description, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228113417 WDM-Based Storage Area Network (SAN) for Disaster Recovery Operations
Authors: Sandeep P. Abhang, Girish V. Chowdhay
Abstract:
This paper proposes a Wavelength Division Multiplexing (WDM) technology based Storage Area Network (SAN) for all type of Disaster recovery operation. It considers recovery when all paths failure in the network as well as the main SAN site failure also the all backup sites failure by the effect of natural disasters such as earthquakes, fires and floods, power outage, and terrorist attacks, as initially SAN were designed to work within distance limited environments[2]. Paper also presents a NEW PATH algorithm when path failure occurs. The simulation result and analysis is presented for the proposed architecture with performance consideration.Keywords: SAN, WDM, FC, Ring, IP, network load, iSCSI, miles, disaster.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194613416 Resistive RAM Based on Hfox and its Temperature Instability Study
Authors: Z. Fang, H.Y. Yu, W.J. Liu, N. Singh, G.Q. Lo
Abstract:
High performance Resistive Random Access Memory (RRAM) based on HfOx has been prepared and its temperature instability has been investigated in this work. With increasing temperature, it is found that: leakage current at high resistance state increases, which can be explained by the higher density of traps inside dielectrics (related to trap-assistant tunneling), leading to a smaller On/Off ratio; set and reset voltages decrease, which may be attributed to the higher oxygen ion mobility, in addition to the reduced potential barrier to create / recover oxygen ions (or oxygen vacancies); temperature impact on the RRAM retention degradation is more serious than electrical bias.Keywords: RRAM, resistive switching, temperature instability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241113415 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm
Authors: Wilayat Ali, Li Sheng, Waleed Ahmed
Abstract:
The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.Keywords: SLAM, ROS, navigation, localization and mapping, Gazebo, Rviz, Turtlebot2, SLAM algorithms, 2d Indoor environment, Cartographer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 123213414 Characterization of Fabricated A 384.1-MgO Based Metal Matrix Composite and Optimization of Tensile Strength using Taguchi Techniques
Authors: Nripjit, Anand K Tyagi, Nirmal Singh
Abstract:
The present work consecutively on synthesis and characterization of composites, Al/Al alloy A 384.1 as matrix in which the main ingredient as Al/Al-5% MgO alloy based metal matrix composite. As practical implications the low cost processing route for the fabrication of Al alloy A 384.1 and operational difficulties of presently available manufacturing processes based in liquid manipulation methods. As all new developments, complete understanding of the influence of processing variables upon the final quality of the product. And the composite is applied comprehensively to the acquaintance for achieving superiority of information concerning the specific heat measurement of a material through the aid of thermographs. Products are evaluated concerning relative particle size and mechanical behavior under tensile strength. Furthermore, Taguchi technique was employed to examine the experimental optimum results are achieved, owing to effectiveness of this approach.Keywords: MMC, Thermographs, Tensile strength, Taguchi technique, Optimal parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163913413 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model
Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang
Abstract:
The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.
Keywords: Absorber plates, dual-phase-lag, non-Fourier, solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131613412 Online Brands: A Comparative Study of World Top Ranked Universities with Science and Technology Programs
Authors: Zullina H. Shaari, Amzairi Amar, Abdul Mutalib Embong, Hezlina Hashim
Abstract:
University websites are considered as one of the brand primary touch points for multiple stakeholders, but most of them did not have great designs to create favorable impressions. Some of the elements that web designers should carefully consider are the appearance, the content, the functionality, usability and search engine optimization. However, priority should be placed on website simplicity and negative space. In terms of content, previous research suggests that universities should include reputation, learning environment, graduate career prospects, image destination, cultural integration, and virtual tour on their websites. The study examines how top 200 world ranking science and technology-based universities present their brands online and whether the websites capture the content dimensions. Content analysis of the websites revealed that the top ranking universities captured these dimensions at varying degree. Besides, the UK-based university had better priority on website simplicity and negative space compared to the Malaysian-based university.
Keywords: Science and technology programs, top-ranked universities, online brands, university websites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229213411 Influence of Ambient Condition on Performance of Wet Compression Process
Authors: Kyoung Hoon Kim
Abstract:
Gas turbine systems with wet compression have a potential for future power generation, since they can offer a high efficiency and a high specific power with a relatively low cost. In this study influence of ambient condition on the performance of the wet compression process is investigated with a non-equilibrium analytical modeling based on droplet evaporation. Transient behaviors of droplet diameter and temperature of mixed air are investigated for various ambient temperatures. Special attention is paid for the effects of ambient temperature, pressure ratio, and water injection ratios on the important wet compression variables including compressor outlet temperature and compression work. Parametric studies show that downing of the ambient temperature leads to lower compressor outlet temperature and consequently lower consumption of compression work even in wet compression processes.Keywords: water injection, droplet evaporation, wet compression, gas turbine, ambient condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175413410 Content Based Sampling over Transactional Data Streams
Authors: Mansour Tarafdar, Mohammad Saniee Abade
Abstract:
This paper investigates the problem of sampling from transactional data streams. We introduce CFISDS as a content based sampling algorithm that works on a landmark window model of data streams and preserve more informed sample in sample space. This algorithm that work based on closed frequent itemset mining tasks, first initiate a concept lattice using initial data, then update lattice structure using an incremental mechanism.Incremental mechanism insert, update and delete nodes in/from concept lattice in batch manner. Presented algorithm extracts the final samples on demand of user. Experimental results show the accuracy of CFISDS on synthetic and real datasets, despite on CFISDS algorithm is not faster than exist sampling algorithms such as Z and DSS.
Keywords: Sampling, data streams, closed frequent item set mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170913409 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U networks
Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard A. Jorswieck
Abstract:
The capacity of fifth-generation (5G)vehicle-to-everything (V2X) networks poses significant challenges.To address this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a vehicular heterogeneous network (HetNet). We propose a framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles, while guarantying the WiFi users throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.
Keywords: Vehicle-to-everything, resource allocation, BS assignment, new radio, new radio unlicensed, coexistence NR-U and WiFi, deep deterministic policy gradient, Deep Q-network, Duty cycle mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32613408 Structural Characterization and Physical Properties of Antimicrobial (AM) Starch-Based Films
Authors: Eraricar Salleh, Ida Idayu Muhamad, Nozieanna Khairuddin
Abstract:
Antimicrobial (AM) starch-based films were developed by incorporating chitosan and lauric acid as antimicrobial agent into starch-based film. Chitosan has wide range of applications as a biomaterial, but barriers still exist to its broader use due to its physical and chemical limitations. In this work, a series of starch/chitosan (SC) blend films containing 8% of lauric acid was prepared by casting method. The structure of the film was characterized by Fourier transform infrared spectroscopy (FTIR), Xray diffraction (XRD), and scanning electron microscopy (SEM). The results indicated that there were strong interactions were present between the hydroxyl groups of starch and the amino groups of chitosan resulting in a good miscibility between starch and chitosan in the blend films. Physical properties and optical properties of the AM starch-based film were evaluated. The AM starch-based films incorporated with chitosan and lauric acid showed an improvement in water vapour transmission rate (WVTR) and addition of starch content provided more transparent films while the yellowness of the film attributed to the higher chitosan content. The improvement in water barrier properties was mainly attributed to the hydrophobicity of lauric acid and optimum chitosan or starch content. AM starch based film also showed excellent oxygen barrier. Obtaining films with good oxygen permeability would be an indication of the potential use of these antimicrobial packaging as a natural packaging and an alternative packaging to the synthetic polymer to protect food from oxidation reactionsKeywords: Antimicrobial starch-based films, chitosan, lauric acid, starch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280813407 Work Function Engineering of Functionally Graded ZnO+Ga2O3 Thin Film for Solar Cell and Organic Light Emitting Diodes Applications
Authors: Yong-Taeg Oh, Won Song, Seok-Eui Choi, Bo-Ra Koo, Dong-Chan Shin
Abstract:
ZnO+Ga2O3 functionally graded thin films (FGTFs) were examined for their potential use as Solar cell and organic light emitting diodes (OLEDs). FGTF transparent conducting oxides (TCO) were fabricated by combinatorial RF magnetron sputtering. The composition gradient was controlled up to 10% by changing the plasma power of the two sputter guns. A Ga2O3+ZnO graded region was placed on the top layer of ZnO. The FGTFs showed up to 80% transmittance. Their surface resistances were reduced to < 10% by increasing the Ga2O3: pure ZnO ratio in the TCO. The FGTFs- work functions could be controlled within a range of 0.18 eV. The controlled work function is a very promising technology because it reduces the contact resistance between the anode and Hall transport layers of OLED and solar cell devices.Keywords: Work Function, TCO, Functionally Graded Thin Films, Resistance, Transmittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236913406 Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm
Authors: B. Thiagarajan, R. Bremananth
Abstract:
Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.
Keywords: Conditional random field, Magnetic resonance, Markov random field, Modified artificial bee colony.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 294813405 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse
Authors: I. Benning
Abstract:
Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar sub-Saharan African countries.
Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39613404 A Grid-based Neural Network Framework for Multimodal Biometrics
Authors: Sitalakshmi Venkataraman
Abstract:
Recent scientific investigations indicate that multimodal biometrics overcome the technical limitations of unimodal biometrics, making them ideally suited for everyday life applications that require a reliable authentication system. However, for a successful adoption of multimodal biometrics, such systems would require large heterogeneous datasets with complex multimodal fusion and privacy schemes spanning various distributed environments. From experimental investigations of current multimodal systems, this paper reports the various issues related to speed, error-recovery and privacy that impede the diffusion of such systems in real-life. This calls for a robust mechanism that caters to the desired real-time performance, robust fusion schemes, interoperability and adaptable privacy policies. The main objective of this paper is to present a framework that addresses the abovementioned issues by leveraging on the heterogeneous resource sharing capacities of Grid services and the efficient machine learning capabilities of artificial neural networks (ANN). Hence, this paper proposes a Grid-based neural network framework for adopting multimodal biometrics with the view of overcoming the barriers of performance, privacy and risk issues that are associated with shared heterogeneous multimodal data centres. The framework combines the concept of Grid services for reliable brokering and privacy policy management of shared biometric resources along with a momentum back propagation ANN (MBPANN) model of machine learning for efficient multimodal fusion and authentication schemes. Real-life applications would be able to adopt the proposed framework to cater to the varying business requirements and user privacies for a successful diffusion of multimodal biometrics in various day-to-day transactions.Keywords: Back Propagation, Grid Services, MultimodalBiometrics, Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191713403 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: Classification, SOFM, neural network, RGB images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231913402 An Artificial Immune System for a Multi Agent Robotics System
Authors: Chingtham Tejbanta Singh, Shivashankar B. Nair
Abstract:
This paper explores an application of an adaptive learning mechanism for robots based on the natural immune system. Most of the research carried out so far are based either on the innate or adaptive characteristics of the immune system, we present a combination of these to achieve behavior arbitration wherein a robot learns to detect vulnerable areas of a track and adapts to the required speed over such portions. The test bed comprises of two Lego robots deployed simultaneously on two predefined near concentric tracks with the outer robot capable of helping the inner one when it misaligns. The helper robot works in a damage-control mode by realigning itself to guide the other robot back onto its track. The panic-stricken robot records the conditions under which it was misaligned and learns to detect and adapt under similar conditions thereby making the overall system immune to such failures.
Keywords: Adaptive, AIS, Behavior Arbitration, ClonalSelection, Immune System, Innate, Robot, Self Healing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134913401 Drought Stress Indices in Some Silage Maize Cultivars
Authors: Ehsan Shahrabian, Ali Soleymani
Abstract:
Several yield-based stress indices have been developed that may be more applicable to work on drought tolerance. In this study, we investigate possibility of using stress susceptibility index (SSI), tolerance index (TOL), yield stability index (YSI), yield index (YI), stress tolerance index (STI), geometric mean productivity (GMP), harmonic mean (HARM), mean productivity (MP) to identify genotypic performance of some maize cultivars under normal and stressed condition. The results indicate that it was possible to identify superior genotypes for drought tolerance based on their stress indices and generally SSI indices which showed the lowest negative correlation with dry matter yield can be used as the best index for maize breeding programs to introduce drought tolerant hybrids. It was found that SC 647 showed the best behavior under drought stress condition based on TOL and SSI. A higher STI, GMP, and HARM values were attained for ko6. It can be suggested that ko6 should be cultivated in moderate stressful environment of Iran.
Keywords: Index, productivity, stress, susceptibility tolerance, yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253413400 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91213399 Investigating Student Behavior in Adopting Online Formative Assessment Feedback
Authors: Peter Clutterbuck, Terry Rowlands, Owen Seamons
Abstract:
In this paper we describe one critical research program within a complex, ongoing multi-year project (2010 to 2014 inclusive) with the overall goal to improve the learning outcomes for first year undergraduate commerce/business students within an Information Systems (IS) subject with very large enrolment. The single research program described in this paper is the analysis of student attitudes and decision making in relation to the availability of formative assessment feedback via Web-based real time conferencing and document exchange software (Adobe Connect). The formative assessment feedback between teaching staff and students is in respect of an authentic problem-based, team-completed assignment. The analysis of student attitudes and decision making is investigated via both qualitative (firstly) and quantitative (secondly) application of the Theory of Planned Behavior (TPB) with a two statistically-significant and separate trial samples of the enrolled students. The initial qualitative TPB investigation revealed that perceived self-efficacy, improved time-management, and lecturer-student relationship building were the major factors in shaping an overall favorable student attitude to online feedback, whilst some students expressed valid concerns with perceived control limitations identified within the online feedback protocols. The subsequent quantitative TPB investigation then confirmed that attitude towards usage, subjective norms surrounding usage, and perceived behavioral control of usage were all significant in shaping student intention to use the online feedback protocol, with these three variables explaining 63 percent of the variance in the behavioral intention to use the online feedback protocol. The identification in this research of perceived behavioral control as a significant determinant in student usage of a specific technology component within a virtual learning environment (VLE) suggests that VLEs could now be viewed not as a single, atomic entity, but as a spectrum of technology offerings ranging from the mature and simple (e.g., email, Web downloads) to the cutting-edge and challenging (e.g., Web conferencing and real-time document exchange). That is, that all VLEs should not be considered the same. The results of this research suggest that tertiary students have the technological sophistication to assess a VLE in this more selective manner.
Keywords: Formative assessment feedback, virtual learning environment, theory of planned behavior, perceived behavioral control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208913398 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498