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Abstract—Particle swarm optimization (PSO) is a
population-based stochastic optimization algorithm. PSO was
inspired by the natural behavior of birds and fish in migration
and foraging for food. PSO is considered as a multidisciplinary
optimization model that can be applied in various optimization
problems. PSO’s ideas are simple and easy to understand but PSO
is only applied in simple model problems. We think that in order to
expand the applicability of PSO in complex problems, PSO should
be described more explicitly in the form of a mathematical model. In
this paper, we represent PSO in a mathematical model and apply in
the multivariate data classification. First, PSOs general mathematical
model (MPSO) is analyzed as a universal optimization model. Then,
Model of Optimal Centroids (MOC) is proposed for the multivariate
data classification. Experiments were conducted on some benchmark
data sets to prove the effectiveness of MOC compared with several
proposed schemes.

Keywords—Analysis of optimization, artificial intelligence-based
optimization, optimization for learning and data analysis, global
optimization.

I. INTRODUCTION

PARTICLE Swarm Optimization [3] is one of the most

popular swarm intelligence techniques that mimic the

navigation mechanism of a swarm of birds or a school of fish

in nature. PSO algorithm is considered as a multidisciplinary

optimization model that can be applied in many different

application models such as financial data analysis [4], [5],

medical data analysis [6], image data analysis [7], [8], text

data analysis [9], biological and environmental data analysis

[10], many-feature data analysis [11], cluster analysis [12].

However, most applications of PSO algorithm are simple or

the models of applications are very close to PSO algorithm.

We reason that:

i) All phenomena occurring in nature can be represented by

mathematical models.

ii) Applying a natural phenomenon to a particular problem

is a simulation process.

iii) To simulate a natural phenomena we must know their

mathematical model.

For example, to apply PSO algorithm to any problem we

need to know the mathematical model of PSO algorithm.

Kennedy and later works have only described the mechanisms

of animal behavior, based on their natural behavior, but they

have not yet modeled those behaviors mathematically. This

motivates us to recommend this paper.

In this paper, we propose to re-represent PSO algorithm

as a general mathematical model and a multivariate data

classification model. First, PSOs general mathematical model
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is analyzed in detail to each specific component so that can

be applied into complex application models. Then, Model of

Optimal Centroids - MOC is proposed for the multivariate data

classification.

The remaining part of this paper is organized as follows:

In Section II, we re-present the general mathematical model

of PSO algorithm. In Section III, the proposed MOC model

and some constraint aspects of MOC model are analyzed and

clarified. In Section IV, the application model of MOC in

the multivariate data classification is proposed and analyzed

for clarification. Section V shows the experimental results on

some benchmark data sets to prove the effectiveness of MOC

model compared with several proposed models. A conclusion

of this paper is given in Section VI.

II. THE GENERAL MATHEMATICAL MODEL OF MPSO

The use of mathematical models in the phenomena analysis

of behavior has increased over the years, and they offer some

advantages [13]. Mathematical models help us to see the

phenomena that it reflects more easily. As such we will easily

apply them to specific applications. The animal swarm of PSO

is such a natural phenomenon.

PSO’s general mathematical model consists of five main

components: Ω: Space of the model; I: Input data; J :

Objective function; S: Swarm; O: Output. We have taken the

main characters of the components’ names in order of their

appearance to create the mathematical model combination

MPSO in (1).

[Σ = {Ω, I, J, S,O} (1)

where,

A. Ω Space of MPSO

Ω = {Ω, D} is the space of the problem to be applied. This

component represents the versatility of PSO algorithm. For

example, data mining Ω is a real space; automatic control Ω
can be a complex numeric space. D is the dimensional number

of Ω, and D is the dimensional number of the input data, too.

B. Input Data X of MPSO

I = {X,D} is the input data in D dimensional space. X =
{x1, x2, . . . , xN} , xi ∈ ΩD, i = 1, N .

C. Application Model of MPSO

J = J(X) is the mathematical model of the applied

problem (the optimal objective function). That is, the J

problem uses PSO to find the optimal solution.
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D. Swarm of MPSO

S = {P, f, α} is the swarm that is the basic component of

MPSO.Where,

1) Particles of MPSO: P = {P1, P2, . . . , PM , PPB , PGB}
is the swarm of particles. The particles move in the search

space, the best personal position and the best global position.

M is the size of the swarm.

P = {A,C}, where

A = {A1, A2, . . . , AM , APB , AGB} is the velocity vector

of the particles Pi, i = 1,M and the personal best position

PPB and the global best position PGB in the space ΩD.

C = {C1, C2, . . . , CM , CPB , CGB} is the position vector

of the particles Pi, i = 1,M and PPB and PGB in the space

ΩD.

2) The Fitness Function of MPSO: f = f(J, P ) is a

relationship function between J and PSO. f is used to

identify potential positions in the swarm to guide the swarm

during movement. f = {f1, f2, . . . , fM , fPB , fGB} called the

fitness function of the swarm that measures the optimal index

available on the particles.

3) The Rule Set of MPSO: α = α (P, PPB ∪ PGB)
is a relation function between particles Pi, i = 1,M
with the swarm’s mechanism of movement.α =
{α1, α2, ..., αM , αPB , αGB} called the set of rules that

identify potential solutions PPB v PGB . The structure of α
is decided by the fitness function where,

αi = αi (Pi, PPB) ⇔ αi (fi, fPB) , i = 1,M is the rule

that specifies the relationship between the ith particle and the

PPB personal optimal particles which is through their fitness

function.

αPB = αPB (PPB , PGB) ⇔ αPB (fPB , fGB) is a rule that

regulates the relationship between PPB and PGB which is also

passed to their fitness function.

αGB = αGB (PGB , β) ⇔ αGB (fGB , β) is the rule that

specifies the relationship between the PGB particle and the

search stop condition.

PGB = {CGB , AGB}, PGB ∈ {P1, P2, . . . , PM} is the

best of the M particles in the swarm. PGB corresponds to

an optimal solution for the J application model and is the

expected result of the PSO algorithm. PGB is determined

among the particles based on the optimal index available on

these particles. The particle with the highest optimal index is

chosen as PGB .

E. The Optimal Solution of MPSO

O = O (J, PGB) is the result set of the swarm’s output. The

structure of O is decided by J . The amount of O is determined

by PGB . Usually O is the best global position.

F. The Operation of MPSO

The swarm operates according to the following rule.

Particles in the swarm move sequentially, with the same

number of steps, the velocity calculated by (2) and position

according to (3).

A
(t+1)
i = ωA

(t)
i +c1r

(t)
1 (P

(t)
lb −P

(t)
i )+c2r

(t)
2 (P

(t)
gb −P

(t)
i ) (2)

Fig. 1 The general mathematical model of Particle Swarm Optimization
algorithm - MPSO

C
(t+1)
i = C

(t)
i +A

(t)
i (3)

where, the user-defined behavioral parameter w is called the

inertia weight and controls the amount of recurrence in the

particles velocity. Stochastic variables r1 and r2 are random

numbers between 0 and 1. Positive constant c1 and c2 are

the learning factors of the stochastic acceleration terms and

determine the impact of the personal best and the global best,

respectively.

Completing each move, the particles calculate velocity,

position and the fitness function independently. Afterwards,

particles must remain in the waiting state in turn to guide the

local optimum position. After all the particles have completed

the guiding of local optimal position Plb, the swarm continues

to guide the next global optimal position Pgb. After the swarm

has determined the global optimization location that satisfies

the condition alpha, the swarm will end the searching. With

the mechanism of operation of such swarm, we can show

MPSO model in Fig. 1.

III. THE MODEL OF OPTIMAL CENTROIDS

PSO has been widely exploited to solve complex clustering

tasks, where simpler clustering algorithms, such as K-means,
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Fuzzy c-means, Fuzzy co-clustering are likely to get stuck into

a local optimum possibly far from a satisfactory result.

In this paper, the problem of applying MPSO model to find

the initial cluster center for FCoC algorithm: Let data set X =
{x1, x2, . . . , xN} , xi ∈ RD, i = 1, N Conduct cluster X into

G different clusters. The problem of ”Determining the optimal

initialization cluster center solution for FCoC algorithm using

MPSO model” is called The Model of Optimization Centroids

(MOC). The MOC model is shown in (4).

ΣM = {ΩM , IM , JM , SM , OM} (4)

where,

A. The Space of MOC

ΩM = {R,D} ∈ RD with R is the real number field. D is

the dimension number of the space and is also the dimension

number of the data.

B. Input Data of MOC

IM = {X,D} where, X = {x1, x2, . . . , xN} , xi ∈
RD, i = 1, N is a data set in D-dimensional space.

C. The Objective Function JM

In the MOC model, the PSO algorithm is used to find

the optimal initialization cluster center solution for the FCoC

algorithm. Therefore, JM is the optimal objective function of

FCoC, whose form is JM = JFCoC (X,U, V, C) where,

JFCoC(X,U, V, C) =
G∑

k=1

N∑
i=1

D∑
j=1

ukivkjdkij

+ Tu

G∑
k=1

N∑
i=1

uki log uki + Tv

G∑
k=1

D∑
j=1

vkj log vkj

(5)

uki stands for object membership degree of the xi to cluster

with centroid ck, U = {uki} is the GxN object membership

function matrix; vkj stands for the feature membership degree

defined as the membership grade of feature j to the cluster k
and V = {vkj} be the feature membership matrix with size

GxD.

CFCoC = {c1, c2, ..., cG}, ck ∈ RD, k = 1, G are centroids

of X which will be used by FCoC algorithm to group X into

G clusters.

D. The Swarm MOC

SM = {P, f, α} where,

1) The Particles of MOC: P =
{P1, P2, . . . , PM , PPB , PGB} is the particle set of the

swarm. PPB is the position corresponding to the personal

best particle at each move. PGB is the position corresponding

to the global best particle of the swarm up to the present

migration time. Each particle Pi = {Ai, Ci} , i = 1,M
where, A = {A1, A2, . . . , AM , APB , AGB},

Ai, APB , AGB ∈ RD, i = 1,M is the velocity

vector and C = {C1, C2, . . . , CM , CPB , CGB},

Ci, CPB , CGB ∈ RD, i = 1,M is the position vector

of the particles Pi, i = 1,M and PPB and PGB positions in

RD space.

Each velocity vector Ai = {ai1, ai2, . . . , aiG} with aij ∈
RD, i = 1,M ; j = 1, G is the jth velocity component of the

ith element. aij = {aij1, aij2, ..., aijG} with aijk ∈ R, i =
1,M ; j = 1, G; k = 1, D is the velocity component in the

direction k of the jth velocity component of the ith element,

the aijk of the next move is calculated by (6).

a
(t+1)
ijk = ωa

(t)
ijk + q1r

(t)
1 (c

(t)
PB−jk − c

(t)
ijk)+

q2r
(t)
2 (c

(t)
GB−jk − c

(t)
ijk), i = 1,M ; j = 1, G; k = 1, D

(6)

Each position vector Ci = {ci1, ci2, . . . , ciG} with cij ∈
RD, i = 1,M ; j = 1, G is the jth position of the ith particle.

cij = {cij1, cij2, ..., cijG} with cijk ∈ R, i = 1,M ; j =
1, G; k = 1, D is the position component of the kth dimension

of the jth element of the ith element, cijk of the next move

is calculated by:

c
(t+1)
ijk = c

(t)
ijk + a

(t)
ijk, i = 1,M ; j = 1, G; k = 1, D (7)

2) The Fitness Function of MOC: f = f(J, P ) is a

relationship function between J and PSO algorithm. f is used

to identify potential positions in the swarm to guide the swarm

during movement. f = {f1, f2, . . . , fM , fPB , fGB} is called

the fitness function of the swarm.

Often the fitness function is tied to the optimal objective

function J . For example, [14] used the PCM objective function

to calculate the fitness function for image segmentation;

[15] used the KFECSB objective function to calculate the

fitness function for MRI brain image segmentation; [16] used

the FCM objective function to calculate fitness function for

medical diagnosis. In this paper, we use MOC model to

find the optimal initialization centroids solution for FCoC

algorithm, so the fitness function is determined by (8).

f = 1/JFCoC (8)

3) The Rule Set of MOC: α = α (P, PPB ∪ PGB), α =
{α1, α2, ..., αM , αPB , αGB} is called a set of rules defining

PPB and PGB potential solutions. In the MOC model, the

fitness function f uses the JFCoC objective function according

to (8) with JFCoC as the minimum optimal objective function.

That is, the format of f is an array of real numbers and the

well-positioned particle has the fitness function f increasing.

Therefore, the rule on f is the comparison rule on real

numbers. That is:

For α1, α2, ..., αM : Under the MPSO model, the rules

αi, i = 1,M is used to determine the best personal particle

PPB at every move. Therefore, αi, i = 1,M are rules compare

the fitness function of the particles with the PPB . Mean,

αi (Pi, PPB) : If (fi > fPB) then PPB = Pi, i = 1,M
(9)

For αPB : According to the MPSO model, the rule αPB is used

to determine the best particle of the swarm at each PGB move.

Therefore, αPB is the rule to compare the fitness function of

PGB with PGB . Mean,

αPB (PPB , PGB) : If (fPB > fGB) then PGB = PPB

(10)
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For αGB : According to the MPSO model, the rule αGB is

used to determine the best particle of the swarm and finish

the search process. Therefore, αGB is the rule comparing the

fitness function of the PGB with a given stop condition β.That

is,

αGB (PGB , β) : If (fGB ≥ β) then Stop searching
(11)

4) The Optimal Initialization Centroids Solution of MOC:
O = O (JFCoC , PGB) is a set of positions extracted from

PGB to serve as the optimal initialization cluster for JFCoC .

Therefore, O is CGB ∈ PGB . Mean,

O = CGB = {CGB−1, CGB−2, , CGB−G} (12)

E. A Sample Model MOC

To better understand the MPSO model and MOC model, we

represent an overview of the PSO swarm where the particles

move in a 2-dimensional data clustering space in Fig. 2.

Fig. 2 The model of PSO swarm in 2-dimensional space which can be
grouped into 3 classes

Data set X = {xi} , i = 1, 44 includes 44 data objects

which can be grouped into 3 classes: First class: 13 particles

�. Second layer: 15 elements �. Third class: 16 elements �.

There are 3 optimal centroids: c1
∗ = ©1 = (©11,©12),

c2
∗ = ©2 = (©21,©22), c3

∗ = ©3 = (©31,©32) is displayed

in 2-dimensional space.

The PSO swarm is initialized five particles in random

positions and directions:

The first particle: P1 = {⊕11,
⊕

12,
⊕

13}.

The second particle: P2 = {⊕21,
⊕

22,
⊕

23}.

The third particle: P3 = {⊕31,
⊕

32,
⊕

33}.

The fourth particle: P4 = {⊕41,
⊕

42,
⊕

43}.

The fifth particle: P5 = {⊕51,
⊕

52,
⊕

53}.

IV. APPLICATION OF MOC FOR DATA CLUSTERING

In this paper, we propose a data clustering model, we

call MOC-FCoC algorithm. This model consists of two main

learning loops corresponding to two core models. The first

loop is the loop of the MOC model. MOC model is based

on PSO algorithm to find the optimal initialization centroids

solution. The input of MOC is X data set in D-dimensional

space. The output of MOC model is the position of the

best particle Pgb = (Cgb, Agb) corresponding to the optimal

initialization centroids solution CMOC = Cgb. The MOC

algorithm will end when the fitness function does not improved

after a number of loop τ . The second loop is the loop

of the FCoC algorithm which is the next after the MOC

model is completed. The FCoC algorithm uses CMOC as the

initialization centroids which replaces the random centroids in

traditional clustering algorithms. The clustering algorithm is

described in Algorithm 1

Algorithm 1 MOC-FCoC algorithm

Input:
Data set X = (x1, x2, ..., xN ), xi ∈ RD, i = 1, N .

Swarm of particles ΣM = {Ω, I, J, S,O}; Number of

clusters G, ε, τmax.

Output: Clustering results.

Initiation: Initialize Ω = Ω(X) ∈ RD and randomly

swarm M particles P = {P1, P2, . . . , PM , PPB , PGB}, Pi =
{Ci, Ai} , i = 1,M
τ=1;

While
(∣∣∣f (τ)

GB − f
(τ−1)
GB

∣∣∣ ≤ ε
)
or (τ ≥ τmax) do

Calculate fitness function f using Eq.(8);

If (fi > fPB) then
Save local best solution: PPB=Pi (CPB = Ci;APB =

Ai); fPB=fi;
End if
If (fPB > fGB) then

Save best solution: PGB=PPB by CGB = CPB ;AGB =
APB); fGB=fPB ;

End if
Update velocity components ai = {ai1, ai2, . . . , aiG}

using Eq.(6).

Update position components ci = {ci1, ci2, . . . , ciG} using

Eq.(7).

End For
τ=τ+1

End While
CMOC = CGB

Initialize Centroids C = CMOC , Membership function matrix

U using X and G.

τ=1;

Do
Update centroids ckj ;

Update feature membership function vkj ;

Update object membership function uki;

τ=τ+1

While(max (|uki (τ)− uki (τ − 1)|) ≤ ε or τ ≥ τmax)

V. EXPERIMENTAL RESULTS

In this section we present results of clustering experiments

to demonstrate the advantages and effectiveness of the

proposed models. We ran experiments utilizing three labeled
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data sets from the UC Irvine Machine Learning Repository 1

(see Table I). Then, the performance of the proposed method

is compared with some well known methods in literature for

unsupervised clustering: the Interval Type-2 Fuzzy C-means

(IT2FCM, ML=2, MR=3.5) [17], the Fuzzy Co-Clustering

(FCCI, Tu=9, Tv = 106) [1], the Interval-Valued Fuzzy

Co-Clustering (IVFCoC, Tu = 9, Tv = 106, ML =
1.5, MR = 3.5) [2] and the Interval Type-2 Fuzzy

C-Means Clustering Combining Neighborhood Information

(nr-IT2FCM, ML=2, MR=3) [18]. We use four validity indices

to compare the performance of clustering algorithms: Recall

index (Rec.) and Precision index (Pre.) [19], Accuracy (Acc.)

and F1 score (F1) [20].

TABLE I
THREE REAL DATA SETS FROM THE UCI

Datasets Clusters Objects Features
CNAE-9 9 1080 857
Spambase 2 4601 57
Landsat 7 4435 36

Clustering results are summarized in Table II. In Table

II, the most of values of indexes Precision, Recall, AR

and RI are obtained from MOC-FCoC algorithm which are

greater than the values obtained from algorithms IT2FCM,

FCoC, IVFCoC and nr-IT2FCM. That is, the classification

accuracy of MOC-FCoC algorithm is better than the compared

clustering algorithms.

TABLE II
CLUSTERING RESULTS ON LABELED DATA SETS USING ALGORITHMS

IT2FCM, FCOC, IVFCOC, NR-IT2FCM AND MOC-FCOC

Data sets Algorithms Pre. Rec. F1 Acc. τ

CNAE-9

IT2FCM 0.905 0.904 0.904 0.914 17
FCCI 0.924 0.923 0.923 0.930 15
IVFCoC 0.959 0.958 0.958 0.961 13
nr-IT2FCM 0.914 0.909 0.909 0.920 12
MOC-FCoC 0.985 0.984 0.985 0.985 7

Spambase

IT2FCM 0.896 0.892 0.894 0.903 19
FCCI 0.912 0.904 0.907 0.914 15
IVFCoC 0.953 0.951 0.952 0.953 13
nr-IT2FCM 0.922 0.911 0.916 0.920 10
MOC-FCoC 0.979 0.979 0.979 0.980 8

Landsat

IT2FCM 0.881 0.887 0.882 0.899 18
FCCI 0.926 0.930 0.927 0.935 15
IVFCoC 0.949 0.955 0.951 0.957 13
nr-IT2FCM 0.922 0.935 0.928 0.940 10
MOC-FCoC 0.973 0.977 0.975 0.978 8

From the results in Table II, we can also observe the number

of loops τ so that the classification algorithms converge

to the optimal result. The MOC-FCoC algorithm almost

achieves convergence with fewer iterations than the compared

algorithms.

We can learn from Table II that the MOC-FCoC algorithm

has obvious advantages over the other four methods in

multi-dimensional data classification. The average correct

classification rate of the MOC-FCoC algorithm is higher than

that of other methods. It shows that MOC model can search the

optimal centroids solution for fuzzy co-clustering better than

other models, and it is more capable of data classification.

1https://archive.ics.uci.edu/ml/index.php

VI. CONCLUSION

In this paper, we present a general mathematical model

of PSO algorithm and apply in the data classification.

We look forward to the attention and development to the

contributions of this paper for several reasons follows: 1)

General mathematical model of PSO algorithm: The PSO

algorithm has a simple idea but can be applied in different

fields. Therefore, the mathematical model of PSO algorithm,

is an essential tool to apply PSO algorithm in complex

application problems. The MPSO model is expected to fully

reflect the issues of concern so that we can fully exploit

the advantages of PSO algorithm. 2) Model of Optimal

Centroids: MOC model is a mathematical model of the

problem using MPSO to find the optimal centroids solution

for fuzzy co-clustering. PSO is a versatile algorithm, PSO

algorithm has recently been applied in many different fields

which have different mathematical models. PSO algorithm

has been applied to find the optimal centroids solution

for some clustering algorithms such as K-means, FCM.

MOC model is first proposed and analyzed in detail in this

paper. 3) MOC-FCoC algorithm: Fuzzy co-clustering is an

important unsupervised learning technique that is suitable for

multi-dimensional data clustering (such as remote sensing

images) compared to traditional clustering techniques. One

of the main limitations of FCoC algorithm is sensitivity

to initialization. Data has more dimensions, the sensitivity

level is higher. Furthermore, FCoC’s mathematical model is

more complex than FCM and K-means. Therefore, MOC

model is very meaningful to form MOC-FCoC algorithm for

multi-dimensional data classification. In the future, we will

continue developing and expanding MOC-FCoC algorithm to

classify the multi-spectral images; Classify and detect targets

in the hyper-spectral images and the medical images.

REFERENCES

[1] M. Hanmandlua, O.P. Verma, S.S., V.K. Madasu. ”Color segmentation
by fuzzy co-clustering of chrominance color features,” Neurocomputing,
Vol. 120, pp. 235-249, 2013.

[2] V.N. Pham, N.T. Long, W. Pedrycz. ”Interval-valued fuzzy set approach
to fuzzy co-clustering for data classification,” Knowledge-Based Systems,
Vol. 107, pp. 1-13, 2016.

[3] J. Kennedy, R. Eberhart. ”Particle swarm optimization,” IEEE
International Conference on Neural Networks, Vol. 4, pp. 19421948,
1995.

[4] Y. Song, F. Zhang, C. Liu. ”The risk of block chain financial market based
on particle swarm optimization,” Journal of Computational and Applied
Mathematics, Vol. 37015, Article 112667, 2020.

[5] W. Gao, C. Su. ”Analysis of earnings forecast of blockchain financial
products based on particle swarm optimization,” Journal of Computational
and Applied Mathematics, Vol. 372, Article 112724., 2020

[6] H. Xiong, B. Qiu, J. Liu. ”An improved multi-swarm particle swarm
optimizer for optimizing the electric field distribution of multichannel
transcranial magnetic stimulation,” Artificial Intelligence in Medicine,
Vol. 104, Article 101790, 2020.

[7] F.E.F. Junior, G.G. Yen. ”Particle swarm optimization of deep neural
networks architectures for image classification,” Swarm and Evolutionary
Computation, Vol. 49, pp. 62-74, 2019.

[8] T.R. Farshi, J.H. Drake, E. Ozcan. ”A multimodal particle swarm
optimization-based approach for image segmentation,” Expert Systems
with Applications, Vol. 1491, Article 113233, 2020.

[9] R. Janani, S. Vijayarani. ”Text document clustering using Spectral
Clustering algorithm with Particle Swarm Optimization,” Expert Systems
with Applications, Vol. 13415, pp. 192-200, 2019.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:15, No:3, 2021 

35International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
5,

 N
o:

3,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

90
3.

pd
f



[10] Zhihua Cui, Jiangjiang Zhang, Di Wu, Xingjuan Cai, Jinjun Chen.
”Hybrid many-objective particle swarm optimization algorithm for green
coal production problem,” Information Sciences, Vol. 518, pp. 256-271,
2020.

[11] Md Maruf Hussain, Noriyuki Fujimoto. ”GPU-based parallel
multi-objective particle swarm optimization for large swarms and
high dimensional problems,” Parallel Computing, Vol. 92, Article
102589, 2020.

[12] Yingcheng Zhou, Zheng Zhao, Daojian Cheng. ”Cluster structure
prediction via revised particle-swarm optimization algorithm,” Computer
Physics Communications, Vol. 247, Article 106945, 2020.

[13] J.E. Mazur. ”Mathematical Models and the Experimental Analysis of
Behavior,” Journal of the Experimental Analysis of Behavior, Vol. 85(2),
pp. 275291, 2006.

[14] Y. Zhang, D. Huang, M. Ji, F. Xie. ”Image segmentation using PSO and
PCM with Mahalanobis distance,” Expert Systems with Applications, Vol.
38(7), pp. 9036-9040, 2011.

[15] T.X. Pham, P. Siarry, H. Oulhadj. ”Integrating fuzzy entropy clustering
with an improved PSO for MRI brain image segmentation,” Applied Soft
Computing, Vol. 65, pp. 230-242, 2018.

[16] J.L. Salmeron, S.A. Rahimi, A.M. Navali, A. Sadeghpour. ”Medical
diagnosis of Rheumatoid Arthritis using data driven PSOFCM with scarce
datasets,” Neurocomputing, Vol. 2325, pp. 104-112, 2017.

[17] C. Hwang, F.C.H. Rhee, ”Uncertain fuzzy clustering: interval type-2
fuzzy approach to C-means,” IEEE Transactions on Fuzzy Systems, Vol.
15(1), pp. 107120, 2007.

[18] H. Xing, H. He, D. Hu, T. Jiang, X. Yu. ”An interval Type-2 fuzzy sets
generation method for remote sensing imagery classification,” Computers
& Geosciences, Vol. 133, Article 104287, 2019.

[19] D.L. Olson, D. Delen, Advanced Data Mining Techniques, Springer
ISBN 3-540-76916-1, 1st edition, page 138, 2008.

[20] M.W.P. David, Evaluation: From Precision, Recall, and F-Measure to
ROC, Informedness, Markedness & Correlation, Journal of Machine
Learning Technologies, Vol. 2(1), pp. 37-63, 2011.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:15, No:3, 2021 

36International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
5,

 N
o:

3,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

90
3.

pd
f


