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Abstract—The capacity of fifth-generation (5G)
vehicle-to-everything (V2X) networks poses significant challenges.
To address this challenge, this paper utilizes New Radio (NR) and
New Radio Unlicensed (NR-U) networks to develop a vehicular
heterogeneous network (HetNet). We propose a framework, named
joint BS assignment and resource allocation (JBSRA) for mobile
V2X users and also consider coexistence schemes based on flexible
duty cycle (DC) mechanism for unlicensed bands. Our objective is to
maximize the average throughput of vehicles, while guarantying the
WiFi users throughput. In simulations based on deep reinforcement
learning (DRL) algorithms such as deep deterministic policy gradient
(DDPG) and deep Q network (DQN), our proposed framework
outperforms existing solutions that rely on fixed DC or schemes
without consideration of unlicensed bands.

Keywords—Vehicle-to-everything, resource allocation, BS
assignment, new radio, new radio unlicensed, coexistence NR-U and
WiFi, deep deterministic policy gradient, Deep Q-network, Duty
cycle mechanism.

I. INTRODUCTION

F IFTH-GENERATION (5G) networks are designed

to provide high-speed, low-latency, and reliable

communication services to a wide range of applications,

including the internet of things (IoT), virtual and

augmented reality (VR/AR), and vehicle-to-everything

(V2X) communications. However, the increasing demand

for high-quality services and the exponential growth of

connected devices and data traffic pose significant challenges

for the capacity and spectral efficiency of 5G networks.

Traditional approaches to network design and optimization

may not be sufficient to address the capacity challenges of

5G networks, especially in dense urban areas with high user

density and traffic volume. The deployment of small cell and

heterogeneous network (HetNet) has emerged as a promising

solution to address the capacity challenges of 5G networks.

To provide 5G HetNet, we utilize new radio unlicensed band

(NR-U) for additional frequency capacity in order to offer a

wider spectrum with higher data rates, beside new radio (NR)

network. Our main challenge when using unlicensed bands is

fair spectrum sharing, due to the existence of other wireless

networks such as WiFi. Coexistence mechanisms are required
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to ensure that different wireless technologies can coexist and

share the spectrum without causing interference. Listen before

talk (LBT) and carrier sensing adaptive transmission (CSAT)

are two mechanisms that have been proposed for coexistence

between NR-U and WiFi. LBT involves sensing the channel

before transmitting and waiting for a random time if the

channel is occupied [1]. Due to the possibility that LBT

may not enable NR-U cells to transmit even if necessary, it

is not suitable for ultra-reliable low latency communication

(URLLC) 5G users. In contrast, CSAT improves coexistence

performance and spectral efficiency [2] by sensing the channel

state and adapting the duty cycle (DC) of transmission [3].

However, sensing the channel state faces some problems

like miss detection and false alarm. As a result, coexistence

mechanisms such as LBT and CSAT are highly dependent

on many factors including access points, user density, and

traffic volume. Therefore, further research is needed to

design adequate coexistence mechanisms that can support

the increasing demand for high-quality wireless services in

dense urban areas [4]. One promising approach to design

coexistence mechanisms in 5G networks is the use of machine

learning (ML), such as deep reinforcement learning (DRL), to

make optimal DC of transmission based on the current traffic

and network conditions. DRL has shown great potential in

addressing the coexistence problem in 5G networks, especially

for V2X applications.

A. Related Works

1) Het-Nets: Several studies have focused on optimizing

resource allocation and base station (BS) assignment in

HetNets. In [5], the authors presented a two-tier network

as well as a BS assignment algorithm to maximize the

throughput. Similarly, in [6], the authors presented an

optimized joint uplink/downlink resource allocation scheme

for orthogonal frequency-division multiple access (OFDMA)

networks, which maximizes the sum rate while ensuring

fairness. In [7], a sum rate maximizing cell association

algorithm was proposed, which assigns users to BSs based on

their channel gains. Additionally, a user association algorithm

was proposed in [8] for load balancing in HetNets.

2) Unlicensed band: There has been significant research

on coexistence mechanisms between NR-U and WiFi in

unlicensed bands. In [9], the authors proposed a mechanism

for the coexistence of NR-U and WiFi systems in unlicensed

bands by allocating bandwidth and transmission opportunities
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TABLE I
COMPARISON OF RELATED WWORKS

Paper V2X network HetNet Unlicensed band Flexible duty cycle mechanism Resource allocation ML solution

[5] xxx
√√√

xxx xxx xxx xxx

[12]
√√√

xxx
√√√ √√√

xxx
√√√

[18]
√√√

xxx
√√√

xxx
√√√

xxx

[10] xxx xxx
√√√ √√√ √√√ √√√

[15] xxx xxx
√√√ √√√

xxx
√√√

[7] xxx
√√√

xxx xxx xxx xxx

[17] xxx xxx
√√√

xxx xxx xxx

Our work
√√√ √√√ √√√ √√√ √√√ √√√

to improve throughput and fairness for both systems. A

similar problem was also solved by [10] using DRL

algorithms. The authors of [11] presented a method for

enabling NR-U to operate in unlicensed spectrum using

LBT switching procedures, which can effectively reduce

the interference between NR-U and WiFi. In [12], the

authors proposed an algorithm based on Q-learning for

coexistence between long-term evolution Unlicensed (LTE-U)

and WiFi in multi-channel environments, which can optimize

the coexistence performance and improve the throughput.

The authors of [13] investigated the impact of WiFi

transmissions on Cellular-V2X (C-V2X) performance and

demonstrated that coexistence was possible with proper

interference management. Furthermore, a coexistence

algorithm based on Q-learning for LTE-U and WiFi was

proposed in [14], which can optimize transmission power

and channel selection to mitigate interference. In [15], the

authors proposed a ML-based discontinuous reception (DRX)

mechanism for NR-U networks, to improve energy efficiency

and reduce interference with WiFi networks. The authors of

[16] proposed a coexistence mechanism that assigns multiple

bandwidth parts to NR-U and WiFi systems in the unlicensed

band by jointly optimizing bandwidth assignment and

transmission parameters. A contention resolution algorithm

was proposed in [17] for NR-U in shared sub-7 GHz bands,

based on gap-based channel access. The algorithm considered

channel occupancy information of both NR-U and incumbent

WiFi networks to improve coexistence performance.

Overall, these studies demonstrate the importance of

coexistence mechanisms to ensure fair sharing of unlicensed

spectrum. This will improve the performance of wireless

systems in dense urban areas. However, there is still a need

for further research to address the challenges of coexistence in

the unlicensed band, particularly in the context of 5G systems.

In Table I, we compare our work with the most relevant

previous research. To the best of our knowledge, no study

has investigated joint BS assignment and resource allocation

(JBSRA) with considering flexible DC coexistence mechanism

in unlicensed bands for V2X networks.

B. Contribution

In this paper, we propose a DRL-based JBSRA framework

for NR and NR-U networks in the context of a HetNet

with V2X users. Our framework considers the coexistence

problem between NR-U and WiFi users, which we address

using a flexible DC mechanism. To maximize V2X network

throughput, we formulate an optimization problem and

utilize deep deterministic policy gradient (DDPG) and deep

Q-network (DQN)-DDPG algorithms to solve that. The

contributions of this work include the following key items:

• We design a two-step DDPG algorithm, with a first step

being BS assignment and a second step being resource

allocation, in the context of a HetNet that supports V2X.

• A RL-based flexible DC mechanism is proposed, which takes

into account WiFi throughput to mitigate the coexistence issue.

• We propose the DQN-DDPG module, which employs DQN

for BS assignment and DDPG for resource allocation, and

evaluate its performance against the DDPG module.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Vehicle

V2I DL from NR BS NR BS

NR-U BS

WiFi AP

WiFi Users
V2I DL from NR-U BS
NR-U Interference

WiFi UL

Fig. 1 System model

A. 5G-HetNet

To support the large number of users in 5G, we propose a

two-tier HetNet that consists of B1 macro (NR) BSs and B2

micro (NR-U) BSs in downlink as shown in Fig. 1. The sets of

BSs are denoted as B = {B1,B2}, where B1 = {1, 2, ..., B1}
and B2 = {1, 2, ..., B2} represent the set of macro and micro

BSs, respectively. We also define R = {R1,R2}, where R1 =
{1, 2, ..., R1} and R2 = {1, 2, ..., R2} represent the set of
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resource blocks (RBs) for macro and micro BSs, respectively.

The total number of RBs for macro and micro BSs are

denoted by R1 and R2. In addition, V = {1, 2, . . . , v, . . . , V }
demonstrates the set of vehicles, where V represents the total

number of vehicles. To indicate the BS and RB assignment,

we define the binary variable ηtv,b[r] ∈ {0, 1} for vehicle v at

time slot t. We have ηtv,b[r] = 1 if BS b ∈ B uses RB r ∈ R
to transmit data to vehicle v, and ηtv,b[r] = 0 otherwise. We

consider each time slot as 1 ms and contains 12 RBs with

a bandwidth of 15 kHz (for a total bandwidth of 180 kHz)

according to the 3rd generation partnership project (3GPP) 5G

standard [19]. OFDMA is used as multiple access to increase

the capacity of the system and enable more users to access the

network. Thus, each user can use multiple RBs, but each RB

can only be assigned to one user. We calculate the inter-cell

interference, as follows:

Itv,b[r] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
v̂∈V
v̂ �=v

∑
b̂∈B1

b̂ �=b

ηt
v̂,b̂

[r]Pv̂,b̂,r hv,b̂,r, if b ∈ B1,

∑
v̂∈V
v̂ �=v

∑
b̂∈B2,

b̂ �=b

ηt
v̂,b̂

[r]Pv̂,b̂,r hv,b̂,r, if b ∈ B2,

(1)

where Pv,b,r and hv,b,r denote the transmit power and channel

gain from BS b to vehicle v on RB r, respectively. The

signal-to-interference-plus-noise-ratio (SINR) of vehicle v at

time slot t is calculated as follows:

γt
v,b[r] =

ηtv,b[r]Pv,b,r hv,b,r

Itv,b[r] + σ2
, (2)

∀v ∈ V, ∀b ∈ B, ∀r ∈ R,

where σ2 is the noise power. Data rate of vehicle v for BS b on

RB r can be expressed using the Shannon capacity formula:

Rt
v,b[r] = Bw log2[1 + γt

v,b[r]], (3)

where Bw is the bandwidth for each RB, we can describe the

total rate for each vehicle at time slot t as:

Rt
v =

∑
b∈B

∑
r∈R

ηtv,b[r]R
t
v,b[r], (4)

we can also compute the total and mean data rate as:

Rt
Total =

∑
v∈V

Rt
v, (5)

R
t
=

1

V
Rt

Total. (6)

B. RL-Based Duty Cycle Coexistence Mechanism

As mentioned previously, each vehicle can use licensed

(NR) or unlicensed bands (NR-U) to receive packets. However,

since WiFi also uses unlicensed bands, if a vehicle uses these

bands to receive packets, there will be a collision with WiFi.

To address this issue, we propose a DC model based on

reinforcement learning (RL) for both WiFi and V2X networks.

According to Fig. 2, each time slot is divided into two parts:

I) NR-U and WiFi, and II) only WiFi. When part I is enabled,

only NR-U users are allowed to access unlicensed bands. The

NR-U ON NR-U OFF
Vehicle packets WiFi user packets WiFi user delay 

sensitive packets 

Fig. 2 Duty cycle mechanism

reason is WiFi users that utilize the Carrier-Sense Multiple

Access with Collision Avoidance (CSMA/CA) protocol and

are not allowed to use the channels during busy periods.

However, sub-frame puncturing for delay-sensitive data on

the WiFi network is being considered [20]. In Part II, NR-U

is disabled, allowing WiFi users to access unlicensed bands

easily. The duration of one time slot θT , is fixed, and the

duration of NR-U θtv and WiFi parts θtw, are flexible at each

time slot t.

θT = θtv + θtw. (7)

Rt
WiFi[v] is considered as the data rate of user within proximity

of vehicle v at time slot t. In accordance with [21], we can

express the throughput of each WiFi user as follows:

W t
v = θtw ×Rt

WiFi[v], (8)

where θtw represents the duration of time that the WiFi user

occupies the channel, and Rt
WiFi[v] is a random uniform data

rate of the WiFi user v between 600 Mbps and 1200 Mbps,

depending on the modulation and coding methods used at time

slot t, according to IEEE 802.11ax (WiFi 6) [22]. Therefore,

we can calculate the average throughput of WiFi users as:

W
t

=

∑
v W

t
v

V
, (9)

Similarly, we define the throughput for each vehicle and

average throughput of vehicles as follows:

T t
v = θtv ×Rt

v, (10)

T
t
=

∑
v T

t
v

V
, (11)

where θtv represents the duration time of vehicles’ usage, Rt
v

is the data rate of vehicle v at time slot t.

C. Optimization Problem
The optimization problem can be expressed as follows:

max
η,p,θ

{
T∑

t=1

T
t

}
(12a)

s.t. C1 : T
t ≥ T , ∀t ∈ T, (12b)

C2 : W
t ≥ W, ∀t ∈ T, (12c)

C3 :
V∑

v=1

R∑
r=1

ηtv,b[r]P
t
v,b,r ≤ PMax, , ∀b ∈ B, (12d)

C4 :

V∑
v=1

ηtv,b[r] ≤ 1, ∀b ∈ B, ∀r ∈ R, ∀t ∈ T. (12e)
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TABLE II
NOTATIONS USED IN THE PAPER

Notation Definition

V / V / v Number/set/index of vehicles

B / B / b Number/set/index ofs BSs

B1 / B1 / b1 Number/set/index of macro BSs

B2 / B2 / b2 Number/set/index of micro BSs

R / R / r Number/set/index of RBs

R1 / R1 / r1 Number/set/index of RBs for macro

R2 / R2 / r2 Number/set/index of RBs for micro

hv,b,r Channel gain from BS b to vehicle v in RB r

Pv,b,r Power usage of vehicle v from BS b in RB r

Wv Throughput of WiFi user within proximity of vehicle v

γv,b[r] SINR between vehicle v and BS b in RB r

Rv,b[r] Data rate between vehicle v and BS b in RB r

ηv,b[r] BS and RB allocation for vehicle v indicator

θv/θw Duty cycle of vehicle/WiFi user indicator

The optimization objective is to maximize the average

throughput of vehicles. Constraints (12b) and (12c) ensure

the throughput of vehicles and WiFi users, respectively.

Constraint (12d) is defined to ensure that each BS cannot

exceed the maximum transmit power value. Constraint (12e)

indicates each RB cannot be assigned to more than one vehicle

according to OFDMA.

III. SOLUTION

The purpose of this section is to solve the problem of

resource allocation presented in (12a). We have designed DRL

algorithms to address this optimization problem.

In this section, we discuss our DRL solutions, DDPG, and

combined DQN-DDPG. We also discuss their state space,

actions, and reward functions and computational complexity

of the utilized algorithms.

A. Deep Deterministic Policy Gradient

DDPG is a type of DRL that learns a Q-function and a

policy simultaneously. In this subsection, we explain how it

works. DDPG has an actor network and a critic network. The

actor decides which action to take, and critics inform the actor

about how good the action was and how it needs to be adjusted.

The DDPG model is composed of three key elements: state

space, action space, and immediate reward.

1) State Space: The observed state of each agent for each

vehicle v at time slot t consists of four components: (i) ht
v,b,r,

which indicates the instant channel information when it is

connected to BS b on RB r; (ii) the throughput of the vehicle,

T t
v ; (iii) the previous interference from other BSs to vehicles

v on the same RB r, It−1
v,b [r]; and (iv) the throughput of WiFi

users associated with vehicle v used during the previous time

slot, W t−1
v . Therefore, the state space of the agent can be

described as follows:

st = {st1, ..., stv, ..., stV },
stv = [ht

v,b,r, T
t
v , I

t−1
v,b [r],W t−1

v ].

2) Action space: In each time slot t, based on the observed

state, the agent can select actions; BS assignment and RB

allocation for vehicle v indicated by ηtv , the allocated power

for transmission ptv , DC allocation only for vehicles connected

to micro BS θtv . Thus, the agent’s action space can be defined

as follows:

at = {at1, ..., atv, ..., atV },
atv = [ηtv, p

t
v, θ

t
v].

3) Immediate reward: In RL algorithms, the agent learns

through a reward provided by the environment. In this case,

to maximize the mean throughput of the vehicles, we use the

immediate reward at each time slot t:

rt =
T

t

T
G(W t

v −W )− κF{ηtv}, (13)

where T and W are the minimum thresholds for the

throughput of vehicles and WiFi users, respectively. The step

function G satisfies constraint (12c), and function F satisfies

constraint (12e), which are given below by (14) and (15),

respectively. Finally, κ is the weight of penalty term used to

balance the reward:

G(x) =

{
1, x ≥ 0,

0, x < 0,
(14)

F{ηtv} =

{
1,

∑
r∈R ηtv,b[r] ≥ 2 ,

0, & otherwise.
(15)

In DDPG, the actor network is used to generate the action

deterministically at, and the critic network is used to evaluate

the rewards of state-action pair (st, at). Target networks are

also used to enhance the stability of actor and critic networks.

The actor network makes its decision based on:

at = π(st, ψ). (16)

In this case, π represents the policy of the actor network,

while ψ represents the weight of the actor network. At

each time slot, the agent takes an action at, receives an

immediate reward rt, and transitions to a new state st+1 =
{st+1

1 , st+1
2 , ..., st+1

V }. The experience (st, at, rt, st+1) is then

stored in the replay memory buffer D with a size of N . The

agent randomly selects a sample i from the buffer, then the

actor network can learn from the following loss function:

LActor
ψ = −(Q(si, π(si, ψ), ϕ)), (17)

where Q is the estimated value of the critic network with

weights ϕ which can evaluate the policy of the actor network.

The agent aims to maximize Q or minimize −Q to update the

weights of the actor network via the gradient:

ψ ← ψ − τ1∇ψL
Actor
ψ . (18)

The critic network can learn using the loss function:

LCritic
ϕ =

∑
i

((ri + γQ̃(si+1, π̃(si+1, ψ̃)ϕ̃))−Q(si, ai, ϕ))2,

(19)

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:9, 2023 

220International Scholarly and Scientific Research & Innovation 17(9) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

9,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

25
5.

pd
f



En
vi

ro
nm

en
t Action space Algorithm1 Action space Algorithm2

 Step 1 BS assignment  

Power allocation 
Resource block allocation 
Duty cycle allocation 

Power allocation 
Resource block allocation Macro BS

Micro BS

Step 2 Resource allocation

Power allocation 
Resource block allocation 
Duty cycle allocation 

Power allocation 
Resource block allocation Macro BS

Micro BS

 BS assignment & Resource allocation  

State: Channel gain, Throughput of vehicles, Interference, Throughput of WiFi users

DDPG DQN DDPG 

Fig. 3 Frameworks of Algorithms

where Q̃ is the Q-value of the target critic network, and ϕ̃ and

ψ̃ are the weights of the target critic network and target actor

network, respectively. The weights of the critic network can

be updated via the gradient:

ϕ ← ϕ− τ2∇ϕL
Critic
ϕ . (20)

At the end, the weights of the actor and critic target

networks are updated by:

ψ̃ ← ψ + (1− τ3)ψ̃, (21)

ϕ̃ ← ϕ+ (1− τ3)ϕ̃, (22)

where τ3 controls the fraction of the target network’s weights

to copy from the main networks. In the next time slot,

the algorithm generates new experiences and updates the

weights of the networks using new samples from the batch. In

summary, all the previous explanations are found in Subsection

III-A3.

1: Initialize the weights ψ of actor network and the weights

ϕ of critic network.

2: Initialize the weights ψ̃ of target actor network and the

weights ϕ̃ of target critic network, ψ̃ = ψ, ϕ̃ = ϕ.

3: Initialize the parameters of environment.

4: for each episode do
5: Randomly initialize the positions and directions of

vehicles.

6: for each step t do
7: Update position of vehicles, according to their

directions and speeds.

8: Consider st = {st1, st2, ..., stV } and choose action

at = Π(st | φ) according to current policy and

exploration noise.

9: for each step v do
10: Evaluate next state st+1

v using the action at.
11: end for
12: receive st+1 = {st+1

1 , st+1
2 , ..., st+1

V } and

13: calculate reward rt by (13).

14: Store transition (st, at, rt, st+1) in replay buffer D
with size N .

15: Sample minibatch of size B, from D.

16: Update weights ψ and ϕ by minimizing the loss

function in 17, (19).

17: Update weights ψ̃ and ϕ̃ by (21), (22).

18: end for
19: end for

B. DQN-DDPG

In this section, we explain a combined DQN-DDPG

algorithm. The DQN consists of a main network and a target

network, both with the same Deep Neural Network (DNN)

architecture as shown in Table III. Since the DQN has a

discrete output, we use it only for selecting the type of

BS assignment action at1[v]. However, DDPG produces a

continuous output, so it selects the other actions at2[v].
At the beginning of each time slot, DQN selects an action

at1 = {at1[1], at1[2], ..., at1[V ]} randomly with probability ε,
or according to (23) with probability 1 − ε, based on the

ε-greedy policy. The variable ε balances the exploration and

experience. Initially, ε = 1, and actions are chosen randomly.

After each time slot, ε is reduced by the epsilon decreasing

rate, combining previous experiments with exploration, until

it reaches the minimum specified value εmin ≥ 0.

at1 = argmax
a1

(Q(st, at1, φ)), (23)

where Q(st, at, φ) is the output Q-value based on the observed

state and action of the main Q network with weights φ. In

our combined algorithm, at each time slot t, at = {at1, at2}
denotes actions, where at1 and at2, are selected ones by DQN

and DDPG, receptively. Following the same process in the

DDPG algorithm, the experience (st, at, rt, st+1) is stored in

the replay memory of DQN and DDPG buffers.

In the same manner as the DDPG algorithm, random

selected experiences of size B from the replay memory are

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:9, 2023 

221International Scholarly and Scientific Research & Innovation 17(9) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

9,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

25
5.

pd
f



utilized to learn the main DQN network such that its loss

function can be expressed as follows:

LMain
φ =

B∑
i=1

((ri + Q̃(si+1, ai+1, φ̃))−Q(si, ai, φ))2, (24)

where Q̃(si, ai, φ̃) is the Q-value of the target DQN network

with weight φ̃ based on si and ai. Thus, by minimizing the

loss function using the gradient descent method, we can update

the weights of the Q network as follows:

φ ← φ− τ4∇φL
Main
φ , (25)

where τ4 represents the learning rate, and φ̃ is

updated periodically by copying φ. In summary, all

the previous explanations are found in Subsection

III-B.

1: Initialize the weights φ for DQN and the weights ψ
and ϕ for actor network and critic network of DDPG

respectively.

2: Initialize the weights φ̃ of target network for DQN and ψ̃,

ϕ̃ of target networks for DDPG, φ̃ = φ, ψ̃ = ψ, ϕ̃ = ϕ.

3: Initialize the parameters of environment.

4: for each episode do
5: Randomly initialize the positions and directions of

vehicles.

6: for each step t do
7: Update position of vehicles, according to their

directions and speeds.

8: Observe st = {st1, st2, ..., stV } and choose BS action

as at1 following the ε-greedy policy based on st

9: choose action at2 = Π(st | φ) according to current

policy and exploration noise for power, RB and DC

allocation.

10: for each vehicle v do
11: Evaluate next state st+1

v using the action at =
{at1, at2}

12: end for
13: receive st+1 = {st+1

1 , st+1
2 , ..., st+1

V } and calculate

reward rt by()

14: Store transition (st, at1, r
t, st+1) in replay buffer D1

with size N1.

15: Store transition (st, at2, r
t, st+1) in replay buffer D2

with size N2.

16: Sample minibatch of size B1, from D1.

17: Sample minibatch of size B2 from D2.

18: Update weights φ by (25).

19: Update weights ψ and ϕ by minimizing the loss

function in (17), (19) respectively.

20: Update the weights φ̃ of the target network of DQN

every 100 steps φ̃ ← φ.

21: Update weights ψ̃ and ϕ̃ by (21), (22) respectively.

22: end for
23: end for

C. Computational Complexity

In this section, we investigate the computational complexity

of our proposed algorithms, which is comprised of the

size of state and action spaces, and training process. The

computational complexity of the DDPG algorithm can be

approximated as: O(n× (m/b)× (s+a+h1+h2)), where n,

m, b, s, a, are the number of iterations, the size of the replay

buffer, the batch size, the size of the state space and the size

of the action space, respectively [23]. Furthermore, h1 and h2

indicate the number of neurons in the first and second hidden

layer of the critic network. Consequently, we can express

the computational complexity of DQN-DDPG algorithm as:

O(n× [(m̃/b̃)× (s̃+ ã+
∑

hi)+(m/b)× (s+a+h1+h2)]),
where s̃ and ã are the size of state and action space in DQN

algorithm. Additionally, hi denotes the number of neurons

in the ith hidden layer of the network. Table III summarizes

the complexity comparison with or without DC allocation in

both algorithms. Hence, DC allocation can increase fairness

performance at the expense of a slight increase in complexity.

IV. SIMULATION RESULTS

This section demonstrates the effectiveness of our DRL

models. We implement our algorithm using Python 3.7.9 and

the Spyder IDE version 5.2.2. The simulation is conducted on a

square area of (1000×1000m2), where vehicles are randomly

distributed with random directions and fixed speeds. Each

vehicle moves 0.01 meters in each 1 ms time slot, resulting in

a vehicle speed of 36 km/h. In order to comply with the 3GPP

standard, we use the following parameters as shown in Table

IV: the carrier frequency is 5 GHz, the total number of RBs

for each BS is 12, and the maximum power of the vehicles is

30 dBm. The antenna heights for the BS and vehicles are 25

and 1.5 meters, respectively.

According to the V2X communication papers [24], our

DQN is a five-layer fully connected neural network with three

hidden layers, each having 256 neurons. The actor of DDPG

has two hidden layers (1024, 512), and the critic network has

two hidden layers (512, 256). Both DQN and DDPG use the

rectified linear unit (ReLU) as the activation function for the

hidden layers. The learning rates of the DQN network, the

actor and critic networks of DDPG are 0.003, 0.0001, and

0.001, respectively. We briefly explain the four baselines in

the paper:

• The DQN-DDPG Model: Based on this model, DQN is

used to assign BS and DDPG is used to assign the remaining

actions, such as RB assignment, power allocation, and DC

allocation.

• Without Het-Net network: This method aims to achieve

results without using unlicensed spectrum.

• Fixed DC: The baseline entails fixing the DC at 0.5 for all

unlicensed users at each time slots.

• Random DC: In this baseline, DCs are randomly selected

for all unlicensed band users at each time slots.

Fig. 4 represents the converge results of the proposed

DDPG and DQN-DDPG algorithms, expressed as the average

reward over the learning episodes. The results demonstrate that

the DDPG algorithm performs better than the DQN-DDPG

algorithm in terms of convergence. However, both algorithms

achieve similar results in average data rates. The average
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TABLE III
COMPLEXITY COMPARISON

Algorithm Computational complexity Complexity compared to the same
algorithm without DC allocation

Fairness compared to the same
algorithm without DC allocation

DDPG with DC allocation
DDPG without DC allocation

O(n× (m/b)× (s+ a+ h1 + h2)) 3.08 % worse
-

17.95 % better
-

DQN-DDPG with DC allocation
DQN-DDPG without DC allocation

O(n× [(m̃/b̃)× (s̃+ ã+
∑

hi)
+(m/b)× (s+ a+ h1 + h2)])

10.14 % worse
-

9.16 % better
-

TABLE IV
SIMULATION PARAMETERS

Environment parameters Value
Carrier frequency 5 GHz
Number of RBs for each BS 12
Bandwidth of each RB 15 kHz
Area environment 1000 × 1000 m2

Number of vehicles 5, 10, 15, 20
Vehicles speed 36 km/h
BSs and vehicles antenna height 25, 1.5 m
BS and vehicles antenna gains 8, 3 dBi
BS and vehicles receiver noise figure 5, 9 dB
Vehicles maximum power 30 dBm
Vehicles mobility model Urban case
Noise power σ2 -114 dBm
Path loss model 128.1 + 37.6log(d)
Shadowing distribution log-normal
Shadowing standard deviation 8 dB
Decorrelation distance 50 m
Pathloss/shadowing update Every 100 ms
Fast fading update Every 1 ms
Fast fading Rayleigh fading

DNN parameters Value
Experience replay buffer size 10000
Mini batch size 64
Number/size of DQN networks hidden layers 3 / 256, 256, 256
Number/size of actor DDPG networks hidden layers 2 / 1024, 512
Number/size of critic DDPG networks hidden layers 2 / 512, 256
DQN networks learning rate 0.001
Epsilon decreasing rate 0.0005
Minimum epsilon rate 0.01
Critic/Actor networks learning rate 0.001/0.0001
Target networks update parameter 0.0005
Discount factor 0.99
Number of episodes 250
Number of steps per episode 100

data rate of vehicles with varying numbers of micro BSs is

presented in Fig. 5. As expected, the data rate decreases as

the number of vehicles increases. However, the incorporation

of multiple micro BSs can improve data transmission rates

by providing multiple RBs for vehicles. The figure clearly

shows that the reduction in data rate is less noticeable when

four micro BSs are present compared to just one micro BS.

Furthermore, when the network is not hybrid (no micro BS),

the data rate is at its lowest point. This highlights the benefit

of using unlicensed and licensed spectrum simultaneously.

To demonstrate the impact of flexible DC on the fairness

factor between vehicles and WiFi users, we utilize Jain’s

fairness index which is a popular metric used to measure the

fairness of multiple users as follows [25]:

F (x) =
(
∑N

i=1 xi)
2

N
∑N

i=1 x
2
i

. (26)

The index ranges from 0 to 1, where 0 indicates complete

Fig. 4 Mean reward per episodes

Fig. 5 Mean rate per number of vehicles

unfairness, and 1 indicates complete fairness. In (26), N is

the number of total users (vehicles and WiFi users), and xi

represents the throughput for user i. As illustrated in Fig. 6,

our simulation results reveal that the use of a fixed DC or

random DC can lead to a lower fairness factor compared to

the use of a flexible DC in both algorithms. The flexible DC

mechanism in our proposed solution takes into account the

throughput of both WiFi and V2X networks. Consequently,

the fairness factor increases and network resources are used

more efficiently and fairly.
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Fig. 6 Impact of duty cycle allocation on fairness factor

V. CONCLUSION

In this paper, we proposed a DRL based JBSRA scheme for

the 5G-V2X network. Our approach addressed the challenge

of limited network capacity in 5G by optimizing resource

allocation for both NR and NR-U networks. We presented a

flexible DC mechanism to mitigate the coexistence problem

between NR-U and WiFi users. During the simulation, it

was observed that DDPG algorithm demonstrated better

convergence performance compared to DQN-DDPG. However,

both proposed algorithms exhibited substantial enhancements

in the data rates of the V2X network and fairness factor

between networks, surpassing the performance of the existing

solutions that either do not consider the utilization of

unlicensed spectrum or adopt fixed DC.
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