Search results for: dynamic power consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5285

Search results for: dynamic power consumption

3905 Robust FACTS Controller Design Employing Modern Heuristic Optimization Techniques

Authors: A.K.Balirsingh, S.C.Swain, S. Panda

Abstract:

Recently, Genetic Algorithms (GA) and Differential Evolution (DE) algorithm technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of DE and GA optimization techniques, for flexible ac transmission system (FACTS)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques has been compared. Further, the optimized controllers are tested on a weekly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a FACTS-based controller, to enhance power system stability.

Keywords: Differential Evolution, Flexible AC TransmissionSystems (FACTS), Genetic Algorithm, Low Frequency Oscillations, Single-machine Infinite Bus Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
3904 Design and Simulation of Low Noise Amplifier Circuit for 5 GHz to 6 GHz

Authors: Hossein Sahoolizadeh, Alishir Moradi Kordalivand, Zargham Heidari

Abstract:

In first stage of each microwave receiver there is Low Noise Amplifier (LNA) circuit, and this stage has important rule in quality factor of the receiver. The design of a LNA in Radio Frequency (RF) circuit requires the trade-off many importance characteristics such as gain, Noise Figure (NF), stability, power consumption and complexity. This situation Forces desingners to make choices in the desing of RF circuits. In this paper the aim is to design and simulate a single stage LNA circuit with high gain and low noise using MESFET for frequency range of 5 GHz to 6 GHz. The desing simulation process is down using Advance Design System (ADS). A single stage LNA has successfully designed with 15.83 dB forward gain and 1.26 dB noise figure in frequency of 5.3 GHz. Also the designed LNA should be working stably In a frequency range of 5 GHz to 6 GHz.

Keywords: Advance Design System, Low Noise Amplifier, Radio Frequency, Noise Figure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5065
3903 Study on Leakage Current Waveforms of Porcelain Insulator due to Various Artificial Pollutants

Authors: Waluyo, Parouli M. Pakpahan, Suwarno, Maman A. Djauhari

Abstract:

This paper presents the experimental results of leakage current waveforms which appears on porcelain insulator surface due to existence of artificial pollutants. The tests have been done using the chemical compounds of NaCl, Na2SiO3, H2SO4, CaO, Na2SO4, KCl, Al2SO4, MgSO4, FeCl3, and TiO2. The insulator surface was coated with those compounds and dried. Then, it was tested in the chamber where the high voltage was applied. Using correspondence analysis, the result indicated that the fundamental harmonic of leakage current was very close to the applied voltage and third harmonic leakage current was close to the yielded leakage current amplitude. The first harmonic power was correlated to first harmonic amplitude of leakage current, and third harmonic power was close to third harmonic one. The chemical compounds of H2SO4 and Na2SiO3 affected to the power factor of around 70%. Both are the most conductive, due to the power factor drastically increase among the chemical compounds.

Keywords: Chemical compound, harmonic, porcelain insulator, leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
3902 Survey of Communication Technologies for IoT Deployments in Developing Regions

Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen

Abstract:

The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them based on a couple of related works. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs) are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The current challenges of various architectures are discussed in detail, with the major issue identified as obstruction of communication paths by buildings, trees, hills, etc.

Keywords: Communication technologies, environmental monitoring, Internet of Things, IoT, IoT deployment challenges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 370
3901 Dynamic Modeling of Underplateform Damper used in Turbomachinery

Authors: Vikas Rastogi, Vipan Kumar, Loveleen Kumar Bhagi

Abstract:

The present work deals with the structural analysis of turbine blades and modeling of turbine blades. A common failure mode for turbine machines is high cycle of fatigue of compressor and turbine blades due to high dynamic stresses caused by blade vibration and resonance within the operation range of the machinery. In this work, proper damping system will be analyzed to reduce the vibrating blade. The main focus of the work is the modeling of under platform damper to evaluate the dynamic analysis of turbine-blade vibrations. The system is analyzed using Bond graph technique. Bond graph is one of the most convenient ways to represent a system from the physical aspect in foreground. It has advantage of putting together multi-energy domains of a system in a single representation in a unified manner. The bond graph model of dry friction damper is simulated on SYMBOLS-shakti® software. In this work, the blades are modeled as Timoshenko beam. Blade Vibrations under different working conditions are being analyzed numerically.

Keywords: Turbine blade vibrations, Friction dampers, Timoshenko Beam, Bond graph modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
3900 Analysis and Experimentation of Interleaved Boost Converter with Ripple Steering for Power Factor Correction

Authors: A. Inba Rexy, R. Seyezhai

Abstract:

Through the fast growing technologies, design of power factor correction (PFC) circuit is facing several challenges. In this paper, a two-phase interleaved boost converter with ripple steering technique is proposed. Among the various topologies, Interleaved Boost converter (IBC) is considered as superior due to enriched performance, lower ripple content, compact weight and size. A thorough investigation is presented here for the proposed topology. Simulation study for the IBC has been carried out using MATLAB/SIMULINK. Theoretical analysis and hardware prototype has been performed to validate the results.

Keywords: Interleaved Boost Converter (IBC), Power Factor Correction (PFC), Ripple Steering Technique, Ripple, and Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3215
3899 A Modified Spiral Search Algorithm and Its Embedded System Architecture Design

Authors: Nikolaos Kroupis, Minas Dasygenis, Dimitrios Soudris, Antonios Thanailakis

Abstract:

One of the most growing areas in the embedded community is multimedia devices. Multimedia devices incorporate a number of complicated functions for their operation, like motion estimation. A multitude of different implementations have been proposed to reduce motion estimation complexity, such as spiral search. We have studied the implementations of spiral search and identified areas of improvement. We propose a modified spiral search algorithm, with lower computational complexity compared to the original spiral search. We have implemented our algorithm on an embedded ARM based architecture, with custom memory hierarchy. The resulting system yields energy consumption reduction up to 64% and performance increase up to 77%, with a small penalty of 2.3 dB, in average, of video quality compared with the original spiral search algorithm.

Keywords: Spiral Search, Motion Estimation, Embedded Systems, Low Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
3898 Low Power Capacitance-to-Voltage Converter for Magnetometer Interface IC

Authors: Dipankar Nag, Choe Andrew Kunil, Kevin Chai Tshun Chuan, Minkyu Je

Abstract:

This paper presents the design and implementation of a fully integrated Capacitance-to-Voltage Converter (CVC) as the analog front-end for magnetometer interface IC. The application demands very low power solution operating in the frequency of around 20 KHz. The design adapts low power architecture to create low noise electronic interface for Capacitive Micro-machined Lorentz force magnetometer sensor. Using a 0.18-μm CMOS process, simulation results of this interface IC show that the proposed CVC can provide 33 dB closed loop gain, 20 nV/√Hz input referred noise at 20 KHz, while consuming 65 μA current from 1.8-V supply. 

Keywords: Analog front end, Capacitance-to-Voltage Converter, Magnetometer, MEMS, Recycling Folded Cascode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3680
3897 Electrical Energy Harvesting Using Thermo Electric Generator for Rural Communities in India

Authors: N. Nandan A. M. Nagaraj, L. Sanjeev Kumar

Abstract:

In the rapidly growing population, the requirement of electrical power is increasing day by day. In order to meet the needs, we need to generate the power using alternate method. In this paper, a presentable approach is developed by analysis and can be implemented by utilizing heat energy, which is generated in numerous ways in some of the rural areas in India. The thermoelectric generator unit will be developed by combing with control circuits and converts, which is used to light the LED lamps. The temperature difference which is available in the kitchens, especially the exhaust pipes/chimneys of wooden fire stoves, where more heat is dissipated into the atmosphere, can be utilized for electrical power generation. Hence, the temperature rise of surroundings atmosphere can be reduced.

Keywords: Thermoelectric generator, LED, converts, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802
3896 Local Dynamic Mechanical Properties of Native Porcine Endplate

Authors: J. Sepitka, J. Lukes, J. Reznicek

Abstract:

Hysitron TriboIndenterTM TI 950 system has been used for studying the local viscoelastic properties of porcine intervertebral disc end plate by means of nanoscale mechanical dynamic analysis. The specimen of an endplate was cut from fresh porcine vertebra dissected from 16 month animal. The lumbar spine motion segments were dissected and 5 millimeter thick plates of vertebral body, endplate and annulus fibrosus were prepared for nanoindentation. The surface of the sample was kept in physiological solution during nanoindentation experiment. We obtained mechanical characteristics of different areas of native endplate (endplate middle and vertebra and annulus fibrosus boundary).

Keywords: nanoindentation, DMA, endplate, cartilage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
3895 A General Regression Test Selection Technique

Authors: Walid S. Abd El-hamid, Sherif S. El-etriby, Mohiy M. Hadhoud

Abstract:

This paper presents a new methodology to select test cases from regression test suites. The selection strategy is based on analyzing the dynamic behavior of the applications that written in any programming language. Methods based on dynamic analysis are more safe and efficient. We design a technique that combine the code based technique and model based technique, to allow comparing the object oriented of an application that written in any programming language. We have developed a prototype tool that detect changes and select test cases from test suite.

Keywords: Regression testing, Model based testing, Dynamicbehavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
3894 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization

Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson

Abstract:

A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.

Keywords: FCCU modeling, optimization, oxy-combustion post-combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
3893 An Experimental Study on the Effects of Bioethanol-Unleaded Gasoline Blends on Engine Performance in a Spark Ignition Engine

Authors: A. Engin Özçelik, Hasan Aydoğan, Mustafa Acaroğlu

Abstract:

In the present study, the effects of bioethanol-unleaded gasoline blends on engine performance were investigated in a spark ignition engine. Fuel containing 100% ethanol (E100), fuel blend containing 40% bioethanol by volume (E40) and 100% unleaded gasoline (E0) were tested and the test results were compared. As the result of the study, it was found that the use of unleaded gasoline and bioethanol-unleaded gasoline blends as fuel did not cause a significant change in engine performance. The results of the engine tests showed that the use of unleaded gasoline-bioethanol blends as fuel caused a decrease in engine torque and engine power depending on the increase in the ratio of bioethanol in the fuel blend. As the result of these decreases, increases of up to 30% were observed in the specific fuel consumption of the engine.

Keywords: Bioetanol, engine performance, unleaded gasoline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
3892 Surface Topography Assessment Techniques based on an In-process Monitoring Approach of Tool Wear and Cutting Force Signature

Authors: A. M. Alaskari, S. E. Oraby

Abstract:

The quality of a machined surface is becoming more and more important to justify the increasing demands of sophisticated component performance, longevity, and reliability. Usually, any machining operation leaves its own characteristic evidence on the machined surface in the form of finely spaced micro irregularities (surface roughness) left by the associated indeterministic characteristics of the different elements of the system: tool-machineworkpart- cutting parameters. However, one of the most influential sources in machining affecting surface roughness is the instantaneous state of tool edge. The main objective of the current work is to relate the in-process immeasurable cutting edge deformation and surface roughness to a more reliable easy-to-measure force signals using a robust non-linear time-dependent modeling regression techniques. Time-dependent modeling is beneficial when modern machining systems, such as adaptive control techniques are considered, where the state of the machined surface and the health of the cutting edge are monitored, assessed and controlled online using realtime information provided by the variability encountered in the measured force signals. Correlation between wear propagation and roughness variation is developed throughout the different edge lifetimes. The surface roughness is further evaluated in the light of the variation in both the static and the dynamic force signals. Consistent correlation is found between surface roughness variation and tool wear progress within its initial and constant regions. At the first few seconds of cutting, expected and well known trend of the effect of the cutting parameters is observed. Surface roughness is positively influenced by the level of the feed rate and negatively by the cutting speed. As cutting continues, roughness is affected, to different extents, by the rather localized wear modes either on the tool nose or on its flank areas. Moreover, it seems that roughness varies as wear attitude transfers from one mode to another and, in general, it is shown that it is improved as wear increases but with possible corresponding workpart dimensional inaccuracy. The dynamic force signals are found reasonably sensitive to simulate either the progressive or the random modes of tool edge deformation. While the frictional force components, feeding and radial, are found informative regarding progressive wear modes, the vertical (power) components is found more representative carrier to system instability resulting from the edge-s random deformation.

Keywords: Dynamic force signals, surface roughness (finish), tool wear and deformation, tool wear modes (nose, flank)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
3891 Utilization Juice Wastes as Corn Replacement in the Broiler Diet

Authors: Yose Rizal, Maria Endo Mahata, Mira Andriani, Guoyao Wu

Abstract:

An experiment was conducted with 80 unsexed broilers of the Arbor Acress strain to determine the capability of a carrot and fruit juice wastes mixture (carrot, apple, manggo, avocado, orange, melon and Dutch egg plant) in the same proportion for replacing corn in broiler diet. This study involved a completely randomized design (CRD) with 5 treatments (0, 5, 10, 15, and 20% of juice wastes mixture in diets) and 4 replicates per treatment. Diets were isonitrogenous (22% crude protein) and isocaloric (3000 kcal/kg diet). Measured variables were feed consumption, average daily gain, feed conversion, as well as percentages of abdominal fat pad, carcass, digestive organs (liver, pancreas and gizzard), and heart. Data were analyzed by analysis of variance for CRD. Increasing juice wastes mixture levels in diets increased feed consumption (P<0.05) and average daily gain (P<0.01), while improving feed utilization efficiency (P<0.05). These treatments also affected (P<0.05) abdominal fat pad percentage but had no effect (P>0.05) on carcass, liver, pancreas, gizzard or heart percentages. In conclusion, up to 20% of juice wastes mixture could be included for the broiler diet to effectively replace up to 40% corn in the diet.

Keywords: average daily gain, feed consumption, feedconversion, juice waste mixture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
3890 Detection of Actuator Faults for an Attitude Control System using Neural Network

Authors: S. Montenegro, W. Hu

Abstract:

The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.

Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
3889 An Evaluation of Sag Detection Techniques for Fast Solid-State Electronic Transferring to Alternate Electrical Energy Sources

Authors: M. N. Moschakis, I. G. Andritsos, V. V. Dafopoulos, J. M. Prousalidis, E. S. Karapidakis

Abstract:

This paper deals with the evaluation of different detection strategies used in power electronic devices as a critical element for an effective mitigation of voltage disturbances. The effectiveness of those detection schemes in the mitigation of disturbances such as voltage sags by a Solid-State Transfer Switch is evaluated through simulations. All critical parameters affecting their performance is analytically described and presented. Moreover, the effect of fast detection of sags on the overall performance of STS is analyzed and investigated.

Keywords: Faults (short-circuits), industrial engineering, power electronics, power quality, static transfer switch, voltage sags (or dips).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
3888 PoPCoRN: A Power-Aware Periodic Surveillance Scheme in Convex Region using Wireless Mobile Sensor Networks

Authors: A. K. Prajapati

Abstract:

In this paper, the periodic surveillance scheme has been proposed for any convex region using mobile wireless sensor nodes. A sensor network typically consists of fixed number of sensor nodes which report the measurements of sensed data such as temperature, pressure, humidity, etc., of its immediate proximity (the area within its sensing range). For the purpose of sensing an area of interest, there are adequate number of fixed sensor nodes required to cover the entire region of interest. It implies that the number of fixed sensor nodes required to cover a given area will depend on the sensing range of the sensor as well as deployment strategies employed. It is assumed that the sensors to be mobile within the region of surveillance, can be mounted on moving bodies like robots or vehicle. Therefore, in our scheme, the surveillance time period determines the number of sensor nodes required to be deployed in the region of interest. The proposed scheme comprises of three algorithms namely: Hexagonalization, Clustering, and Scheduling, The first algorithm partitions the coverage area into fixed sized hexagons that approximate the sensing range (cell) of individual sensor node. The clustering algorithm groups the cells into clusters, each of which will be covered by a single sensor node. The later determines a schedule for each sensor to serve its respective cluster. Each sensor node traverses all the cells belonging to the cluster assigned to it by oscillating between the first and the last cell for the duration of its life time. Simulation results show that our scheme provides full coverage within a given period of time using few sensors with minimum movement, less power consumption, and relatively less infrastructure cost.

Keywords: Sensor Network, Graph Theory, MSN, Communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
3887 Reliability Assessment for Tie Line Capacity Assistance of Power Systems Based On Multi-Agent System

Authors: Nadheer A. Shalash, Abu Zaharin Bin Ahmad

Abstract:

Technological developments in industrial innovations have currently been related to interconnected system assistance and distribution networks. This important in order to enable an electrical load to continue receive power in the event of disconnection of load from the main power grid. This paper represents a method for reliability assessment of interconnected power systems based. The multi-agent system consists of four agents. The first agent was the generator agent to using as connected the generator to the grid depending on the state of the reserve margin and the load demand. The second was a load agent is that located at the load. Meanwhile, the third is so-called "the reverse margin agent" that to limit the reserve margin between 0 - 25% depend on the load and the unit size generator. In the end, calculation reliability Agent can be calculate expected energy not supplied (EENS), loss of load expectation (LOLE) and the effecting of tie line capacity to determine the risk levels Roy Billinton Test System (RBTS) can use to evaluated the reliability indices by using the developed JADE package. The results estimated of the reliability interconnection power systems presented in this paper. The overall reliability of power system can be improved. Thus, the market becomes more concentrated against demand increasing and the generation units were operating in relation to reliability indices. 

Keywords: Reliability indices, Load expectation, Reserve margin, Daily load, Probability, Multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
3886 Optimal Distributed Generator Sizing and Placement by Analytical Method and PSO Algorithm Considering Optimal Reactive Power Dispatch

Authors: Kyaw Myo Lin, Pyone Lai Swe, Khine Zin Oo

Abstract:

In this paper, an approach combining analytical method for the distributed generator (DG) sizing and meta-heuristic search for the optimal location of DG has been presented. The optimal size of DG on each bus is estimated by the loss sensitivity factor method while the optimal sites are determined by Particle Swarm Optimization (PSO) based optimal reactive power dispatch for minimizing active power loss. To confirm the proposed approach, it has been tested on IEEE-30 bus test system. The adjustments of operating constraints and voltage profile improvements have also been observed. The obtained results show that the allocation of DGs results in a significant loss reduction with good voltage profiles and the combined approach is competent in keeping the system voltages within the acceptable limits.

Keywords: Analytical approach, distributed generations, optimal size, optimal location, optimal reactive power dispatch, particle swarm optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163
3885 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control

Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak

Abstract:

With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.

Keywords: Energy-efficient buildings, Hierarchical model predictive control, Microgrid power flow optimization, Price-optimal building climate control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
3884 Synthesis and Foam Power of New Biodegradable Surfactant

Authors: R. Mousli, A. Tazerouti

Abstract:

This work deals with the synthesis and the determination of some surface properties of a new anionic surfactant belonging to sulfonamide derivatives. The interest in this new surfactant is that its behavior in aqueous solution is interesting both from a fundamental and a practice point of view. Indeed, it is well known that this kind of surfactant leads to the formation of bilayer structures, and the microstructures obtained have applications in various fields, ranging from cosmetics to detergents, to biological systems such as cell membranes and bioreactors. The surfactant synthesized from pure n-alkane by photosulfochlorination and derivatized using N-ethanol amine is a mixture of position isomers. These compounds have been analyzed by Gas Chromatography coupled to Mass Spectrometry by Electron Impact mode (GC -MS/IE), and IR. The surface tension measurements were carried out, leading to the determination of the critical micelle concentration (CMC), surface excess and the area occupied per molecule at the interface. The foaming power has also been determined by Bartsch method, and the results have been compared to those of commercial surfactants. The stability of the foam formed has also been evaluated. These compounds show good foaming power characterized in most cases by dry foam.

Keywords: Non ionic surfactants, GC-MS, surface properties, CMC, foam power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
3883 Economic Analysis of Domestic Combined Heat and Power System in the UK

Authors: Thamo Sutharssan, Diogo Montalvao, Yong Chen, Wen-Chung Wang, Claudia Pisac

Abstract:

A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in returns it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10 year warranty.

Keywords: Combined Heat and Power, Clean Energy, Hydrogen Fuel Cell, Economic Analysis of CHP, Zero Emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
3882 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria

Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar

Abstract:

Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.

Keywords: Biocapacity, carbon footprint, ecological footprint assessment, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
3881 The Effects of Multipath on OFDM Systems for Broadband Power-Line Communications a Case of Medium Voltage Channel

Authors: Justinian Anatory, N. Theethayi, R. Thottappillil, C. Mwase, N.H. Mvungi

Abstract:

Power-line networks are widely used today for broadband data transmission. However, due to multipaths within the broadband power line communication (BPLC) systems owing to stochastic changes in the network load impedances, branches, etc., network or channel capacity performances are affected. This paper attempts to investigate the performance of typical medium voltage channels that uses Orthogonal Frequency Division Multiplexing (OFDM) techniques with Quadrature Amplitude Modulation (QAM) sub carriers. It has been observed that when the load impedances are different from line characteristic impedance channel performance decreases. Also as the number of branches in the link between the transmitter and receiver increases a loss of 4dB/branch is found in the signal to noise ratio (SNR). The information presented in the paper could be useful for an appropriate design of the BPLC systems.

Keywords: Communication channel model, Power-line communication, Transfer function, Multipath, Branched network, OFDM, QAM, performance evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
3880 Evaluation of Performance Requirements for Seismic Design of Piping System

Authors: Bu Seog Ju, Woo Young Jung

Abstract:

The cost of damage to the non-structural systems in critical facilities like nuclear power plants and hospitals can exceed 80% of the total cost of damage during an earthquake. The failure of nonstructural components, especially, piping systems led to leakage of water and subsequent shut-down of hospitals immediately after the event. Consequently, the evaluation of performance of these types of structural configurations has become necessary to mitigate the risk and to achieve reliable designs. This paper focuses on a methodology to evaluate the static and dynamic characteristics of complex actual piping system based on NFPA-13 and SMACNA guidelines. The result of this study revealed that current piping system subjected to design lateral force and design spectrum based on UBC-97 was failed in both cases and mode shapes between piping system and building structure were very different

Keywords: Nonstructural component, piping, hospital, seismic, bracing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2889
3879 Hybrid Prefix Adder Architecture for Minimizing the Power Delay Product

Authors: P.Ramanathan, P.T.Vanathi

Abstract:

Parallel Prefix addition is a technique for improving the speed of binary addition. Due to continuing integrating intensity and the growing needs of portable devices, low-power and highperformance designs are of prime importance. The classical parallel prefix adder structures presented in the literature over the years optimize for logic depth, area, fan-out and interconnect count of logic circuits. In this paper, a new architecture for performing 8-bit, 16-bit and 32-bit Parallel Prefix addition is proposed. The proposed prefix adder structures is compared with several classical adders of same bit width in terms of power, delay and number of computational nodes. The results reveal that the proposed structures have the least power delay product when compared with its peer existing Prefix adder structures. Tanner EDA tool was used for simulating the adder designs in the TSMC 180 nm and TSMC 130 nm technologies.

Keywords: Parallel Prefix Adder (PPA), Dot operator, Semi-Dotoperator, Complementary Metal Oxide Semiconductor (CMOS), Odd-dot operator, Even-dot operator, Odd-semi-dot operator andEven-semi-dot operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
3878 A Survey of Job Scheduling and Resource Management in Grid Computing

Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan

Abstract:

Grid computing is a form of distributed computing that involves coordinating and sharing computational power, data storage and network resources across dynamic and geographically dispersed organizations. Scheduling onto the Grid is NP-complete, so there is no best scheduling algorithm for all grid computing systems. An alternative is to select an appropriate scheduling algorithm to use in a given grid environment because of the characteristics of the tasks, machines and network connectivity. Job and resource scheduling is one of the key research area in grid computing. The goal of scheduling is to achieve highest possible system throughput and to match the application need with the available computing resources. Motivation of the survey is to encourage the amateur researcher in the field of grid computing, so that they can understand easily the concept of scheduling and can contribute in developing more efficient scheduling algorithm. This will benefit interested researchers to carry out further work in this thrust area of research.

Keywords: Grid Computing, Job Scheduling, ResourceScheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3401
3877 Increasing Replica Consistency Performances with Load Balancing Strategy in Data Grid Systems

Authors: Sarra Senhadji, Amar Kateb, Hafida Belbachir

Abstract:

Data replication in data grid systems is one of the important solutions that improve availability, scalability, and fault tolerance. However, this technique can also bring some involved issues such as maintaining replica consistency. Moreover, as grid environment are very dynamic some nodes can be more uploaded than the others to become eventually a bottleneck. The main idea of our work is to propose a complementary solution between replica consistency maintenance and dynamic load balancing strategy to improve access performances under a simulated grid environment.

Keywords: Consistency, replication, data grid, load balancing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320
3876 Main Variables Competition in DFB Lasers under Dual Optical Injection

Authors: Najm M. Al-Hosiny

Abstract:

We theoretically investigate the effects of frequency detuning and injection power on the nonlinear dynamics of DFB lasers under dual external optical injection.

Keywords: Optical injection, DFB laser, frequency detuning, injection power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367