Search results for: N. Theethayi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: N. Theethayi

3 The Effects of Multipath on OFDM Systems for Broadband Power-Line Communications a Case of Medium Voltage Channel

Authors: Justinian Anatory, N. Theethayi, R. Thottappillil, C. Mwase, N.H. Mvungi

Abstract:

Power-line networks are widely used today for broadband data transmission. However, due to multipaths within the broadband power line communication (BPLC) systems owing to stochastic changes in the network load impedances, branches, etc., network or channel capacity performances are affected. This paper attempts to investigate the performance of typical medium voltage channels that uses Orthogonal Frequency Division Multiplexing (OFDM) techniques with Quadrature Amplitude Modulation (QAM) sub carriers. It has been observed that when the load impedances are different from line characteristic impedance channel performance decreases. Also as the number of branches in the link between the transmitter and receiver increases a loss of 4dB/branch is found in the signal to noise ratio (SNR). The information presented in the paper could be useful for an appropriate design of the BPLC systems.

Keywords: Communication channel model, Power-line communication, Transfer function, Multipath, Branched network, OFDM, QAM, performance evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
2 Broadband PowerLine Communications: Performance Analysis

Authors: Justinian Anatory, Nelson Theethayi, M. M. Kissaka, N. H. Mvungi

Abstract:

Power line channel is proposed as an alternative for broadband data transmission especially in developing countries like Tanzania [1]. However the channel is affected by stochastic attenuation and deep notches which can lead to the limitation of channel capacity and achievable data rate. Various studies have characterized the channel without giving exactly the maximum performance and limitation in data transfer rate may be this is due to complexity of channel modeling being used. In this paper the channel performance of medium voltage, low voltage and indoor power line channel is presented. In the investigations orthogonal frequency division multiplexing (OFDM) with phase shift keying (PSK) as carrier modulation schemes is considered, for indoor, medium and low voltage channels with typical ten branches and also Golay coding is applied for medium voltage channel. From channels, frequency response deep notches are observed in various frequencies which can lead to reduce the achievable data rate. However, is observed that data rate up to 240Mbps is realized for a signal to noise ratio of about 50dB for indoor and low voltage channels, however for medium voltage a typical link with ten branches is affected by strong multipath and coding is required for feasible broadband data transfer.

Keywords: Powerline Communications, branched network, channel model, modulation, channel performance, OFDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
1 Comparison of different Channel Modeling Techniques used in the BPLC Systems

Authors: Justinian Anatory, Nelson Theethayi

Abstract:

The paper compares different channel models used for modeling Broadband Power-Line Communication (BPLC) system. The models compared are Zimmermann and Dostert, Philipps, Anatory et al and Anatory et al generalized Transmission Line (TL) model. The validity of each model was compared in time domain with ATP-EMTP software which uses transmission line approach. It is found that for a power-line network with minimum number of branches all the models give similar signal/pulse time responses compared with ATP-EMTP software; however, Zimmermann and Dostert model indicates the same amplitude but different time delay. It is observed that when the numbers of branches are increased only generalized TL theory approach results are comparable with ATPEMTP results. Also the Multi-Carrier Spread Spectrum (MC-SS) system was applied to check the implication of such behavior on the modulation schemes. It is observed that using Philipps on the underground cable can predict the performance up to 25dB better than other channel models which can misread the actual performance of the system. Also modified Zimmermann and Dostert under multipath can predict a better performance of about 5dB better than the actual predicted by Generalized TL theory. It is therefore suggested for a realistic BPLC system design and analyses the model based on generalized TL theory be used.

Keywords: Broadband Power line Channel Models, loadimpedance, Branched network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776