Search results for: thermal resistance
1898 Performance and Economic Evaluation of a Hybrid Photovoltaic/Thermal Solar System in Northern China
Authors: E. Sok, Y. Zhuo, S. Wang
Abstract:
A hybrid Photovoltaic/Thermal (PV/T) solar system integrates photovoltaic and solar thermal technologies into one single solar energy device, with dual generation of electricity and heat energy. The aim of the present study is to evaluate the potential for introduction of the PV/T technology into Northern China. For this purpose, outdoor experiments were conducted on a prototype of a PV/T water-heating system. The annual thermal and electrical performances were investigated under the climatic conditions of Beijing. An economic analysis of the system was then carried out, followed by a sensitivity study. The analysis revealed that the hybrid system is not economically attractive with the current market and energy prices. However, considering the continuous commitment of the Chinese government towards policy development in the renewable energy sector, and technological improvements like the increasing cost-effectiveness of PV cells, PV/Thermal technology may become economically viable in the near future.
Keywords: Hybrid Photovoltaic/Thermal (PV/T), Solar energy, Economic analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23641897 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection
Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón
Abstract:
Structural inspection activities are necessary to ensure the correct functioning of infrastructures. UAV techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. In this paper, a methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of RGB and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.
Keywords: Aerial thermography, data processing, drone, low-cost, point cloud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3431896 A Thermal-Shock Fatigue Design of Automotive Heat Exchangers
Authors: A. Chidley, F. Roger, A. Traidia
Abstract:
A method is presented for using thermo-mechanical fatigue analysis as a tool in the design of automotive heat exchangers. Use of infra-red thermography to measure the real thermal history in the heat exchanger reduces the time necessary for calculating design parameters and improves prediction accuracy. Thermal shocks are the primary cause of heat exchanger damage. Thermo-mechanical simulation is based on the mean behavior of the aluminum tubes used in the heat exchanger. An energetic fatigue criterion is used to detect critical zones.
Keywords: Heat exchanger, Fatigue, Thermal shocks. I.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671895 Multilayer Thermal Screens for Greenhouse Insulation
Authors: Clara Shenderey, Helena Vitoshkin, Mordechai Barak, Avraham Arbel
Abstract:
Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or U-value, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the U-value reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the U-value by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse.
Keywords: Energy-saving thermal screen, greenhouse covering material, heat transfer coefficient, hot box.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6251894 Simulation Study on the Indoor Thermal Comfort with Insulation on Interior Structural Components of Super High-Rise Residences
Authors: Y. Wang, H. Fukuda, A. Ozaki, H. Sato
Abstract:
In this study, we discussed the effects on the thermal comfort of super high-rise residences that how effected by the high thermal capacity structural components. We considered different building orientations, structures, and insulation methods. We used the dynamic simulation software THERB (simulation of the thermal environment of residential buildings). It can estimate the temperature, humidity, sensible temperature, and heating/cooling load for multiple buildings. In the past studies, we examined the impact of air-conditioning loads (hereinafter referred to as AC loads) on the interior structural parts and the AC-usage patterns of super-high-rise residences. Super-high-rise residences have more structural components such as pillars and beams than do ordinary apartment buildings. The skeleton is generally made of concrete and steel, which have high thermal-storage capacities. The thermal-storage capacity of super-high-rise residences is considered to have a larger impact on the AC load and thermal comfort than that of ordinary residences. We show that the AC load of super-high-rise units would be reduced by installing insulation on the surfaces of interior walls that are not usually insulated in Japan.Keywords: High-rise Residences, AC Load, Thermal Comfort, Thermal Storage, Insulation Patterns
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15441893 Transient Thermal Stresses of Functionally Graded Thick Hollow Cylinder under the Green-Lindsay Model
Authors: Tariq T. Darabseh
Abstract:
The transient thermoelastic response of thick hollow cylinder made of functionally graded material under thermal loading is studied. The generalized coupled thermoelasticity based on the Green-Lindsay model is used. The thermal and mechanical properties of the functionally graded material are assumed to be varied in the radial direction according to a power law variation as a function of the volume fractions of the constituents. The thermal and elastic governing equations are solved by using Galerkin finite element method. All the finite element calculations were done by using commercial finite element program FlexPDE. The transient temperature, radial displacement, and thermal stresses distribution through the radial direction of the cylinder are plotted.
Keywords: Finite element method, thermal stresses, Green-Lindsay theory, functionally graded material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20061892 Effects of Sodium Bicarbonate Content and Vulcanization Method on Properties of NBR/PVC Thermal Insulator Foam
Authors: P. Suriyachai, N. Thavarungkul, P. Sae-oui
Abstract:
In this research sodium bicarbonate (NaHCO3) was introduced to generate carbon dioxide gas (CO2) to the existing nitrogen gas (N2) of elastomeric foam, to lower thermal conductivity (K). Various loadings of NaHCO3 (0 to 60 phr) were added into the azodicarbonamide (AZC)-containing compound and its properties were then determined. Two vulcanization methods, i.e., hot air and infrared (IR), were employed and compared in this study. Results revealed that compound viscosity tended to increase slightly with increasing NaHCO3 content but cure time was delayed. The effect of NaHCO3 content on thermal conductivity depended on the vulcanization method. For hot air method, the thermal conductivity was insignificantly changed with increasing NaHCO3 up to 40 phr whereas it tended to decrease gradually for IR method. At higher NaHCO3 content (60 phr), unexpected increase of thermal conductivity was observed. The water absorption was also determined and foam structures were then used to explain the results.
Keywords: sodium bicarbonate, thermal conductivity, hot airmethod, infrared method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37661891 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach
Authors: Saowaluck Ukrisdawithid
Abstract:
The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.
Keywords: Single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8131890 Thermal Analysis of the Current Path from Circuit Breakers Using Finite Element Method
Authors: Adrian T. Plesca
Abstract:
This paper describes a three-dimensional thermal model of the current path included in the low voltage power circuit breakers. The model can be used to analyse the thermal behaviour of the current path during both steady-state and transient conditions. The current path lengthwise temperature distribution and timecurrent characteristic of the terminal connections of the power circuit breaker have been obtained. The influence of the electric current and voltage drop on main electric contact of the circuit breaker has been investigated. To validate the three-dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Current path, power circuit breakers, temperature distribution, thermal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26981889 Experiment and Simulation of Laser Effect on Thermal Field of Porcine Liver
Authors: K.Ting, K. T. Chen, Y. L. Su, C. J. Chang
Abstract:
In medical therapy, laser has been widely used to conduct cosmetic, tumor and other treatments. During the process of laser irradiation, there may be thermal damage caused by excessive laser exposure. Thus, the establishment of a complete thermal analysis model is clinically helpful to physicians in reference data. In this study, porcine liver in place of tissue was subjected to laser irradiation to set up the experimental data considering the explored impact on surface thermal field and thermal damage region under different conditions of power, laser irradiation time, and distance between laser and porcine liver. In the experimental process, the surface temperature distribution of the porcine lever was measured by the infrared thermal imager. In the part of simulation, the bio heat transfer Pennes-s equation was solved by software SYSWELD applying in welding process. The double ellipsoid function as a laser source term is firstly considered in the prediction for surface thermal field and internal tissue damage. The simulation results are compared with the experimental data to validate the mathematical model established here in.
Keywords: laser infrared thermal imager, bio-heat transfer, double ellipsoid function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20611888 Assessment of Thermal Comfort at Manual Car Body Assembly Workstation
Authors: A. R. Ismail, N. Jusoh, M. Z. Nuawi, B. M. Deros, N. K. Makhtar, M. N. A. Rahman
Abstract:
The objective of this study is to determine the thermal comfort among worker at Malaysian automotive industry. One critical manual assembly workstation had been chosen as a subject for the study. The human subjects for the study constitute operators at Body Assembly Station of the factory. The environment examined was the Relative Humidity (%), Airflow (m/s), Air Temperature (°C) and Radiant Temperature (°C) of the surrounding workstation area. The environmental factors were measured using Babuc apparatus, which is capable to measure simultaneously those mentioned environmental factors. The time series data of fluctuating level of factors were plotted to identify the significant changes of factors. Then thermal comfort of the workers were assessed by using ISO Standard 7730 Thermal sensation scale by using Predicted Mean Vote (PMV). Further Predicted percentage dissatisfied (PPD) is used to estimate the thermal comfort satisfaction of the occupant. Finally the PPD versus PMV were plotted to present the thermal comfort scenario of workers involved in related workstation. The result of PMV at the related industry is between 1.8 and 2.3, where PPD at that building is between 60% to 84%. The survey result indicated that the temperature more influenced comfort to the occupants
Keywords: Thermal, Comfort, Temperature, PPD, PMV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981887 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures
Authors: J. Hroudova, M. Sedlmajer, J. Zach
Abstract:
Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.
Keywords: Thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21831886 Resistive Switching in TaN/AlNx/TiN Cell
Authors: Hsin-Ping Huang, Shyankay Jou
Abstract:
Resistive switching of aluminum nitride (AlNx) thin film was demonstrated in a TaN/AlNx/TiN memory cell that was prepared by sputter deposition techniques. The memory cell showed bipolar switching of resistance between +3.5 V and –3.5 V. The resistance ratio of high resistance state (HRS) to low resistance state (HRS), RHRS/RLRS, was about 2 over 100 cycles of endurance test. Both the LRS and HRS of the memory cell exhibited ohmic conduction at low voltages and Poole-Frenkel emission at high voltages. The electrical conduction in the TaN/AlNx/TiN memory cell was possibly attributed to the interactions between charges and defects in the AlNx film.
Keywords: Aluminum nitride, nonvolatile memory, resistive switching, thin films.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27041885 Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate
Authors: Ashmin Aryal, Pipat Chaiwiwatworakul, Surapong Chirarattananon
Abstract:
Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room's comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well.
Keywords: Radiant chilled ceiling, thermal comfort, cooling load, outdoor air unit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5031884 Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test
Authors: S. A. Naeini, M. Ghorbani Tochaee
Abstract:
The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of Gmax and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents.
Keywords: Gmax, liquefaction, plastic fines, resonant column, sand-clay mixtures, bentonite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7371883 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects
Authors: Toufic Abd El-Latif Sadek
Abstract:
The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.
Keywords: Asphalt, concrete, satellite thermal images, timing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12931882 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe
Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon
Abstract:
The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.
Keywords: Vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23371881 Analytic on Various Grounding Configurations in Uniform Layer Soil
Authors: Mohd Shahriman B. Mohd Yunus, Mohd Hanif B. Jamaludin, Norain Bt. Bahror
Abstract:
The performance of an embedded grounding system is very important for the safe operation of electrical appliances and human beings. In principle, a safe grounding system has two objectives, which are to dissipate fault current without exceeding any operating and equipment limits and to ensure there is no risk of electric shock to humans in the vicinity of earthed facilities. The case studies in this paper present the calculating grounding resistance for multiple configurations of vertical and horizontally by using a simple and accurate formula. From the analytic calculated results, observed good/empirical relationship between the grounding resistance and length of the embedded grounding configurations. Moreover, the configurations of vertical and horizontal observed effectiveness of grounding resistance and good agreement on the reduction of grounding resistance values especially for vertical configuration.
Keywords: Grounding system, grounding resistance, soil resistivity, electrode geometry, configurations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5071880 Enhanced Dimensional Stability of Rigid PVC Foams Using Glass Fibers
Authors: Nidal H. Abu-Zahra, Murtatha M. Jamel, Parisa Khoshnoud, Subhashini Gunashekar
Abstract:
Two types of glass fibers having different lengths (1/16" and 1/32") were added into rigid PVC foams to enhance the dimensional stability of extruded rigid Polyvinyl Chloride (PVC) foam at different concentrations (0-20 phr) using a single screw profile extruder. PVC foam-glass fiber composites (PVC-GF) were characterized for their dimensional stability, structural, thermal, and mechanical properties. Experimental results show that the dimensional stability, heat resistance, and storage modulus were enhanced without compromising the tensile and flexural strengths of the composites. Overall, foam composites which were prepared with longer glass fibers exhibit better mechanical and thermal properties than those prepared with shorter glass fibers due to higher interlocking between the fibers and the foam cells, which result in better load distribution in the matrix.
Keywords: Polyvinyl Chloride, PVC Foam, PVC Composites, Glass Fiber Composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33161879 Mechanized Proof of Resistance of Denial of Service Attacks in Voting Protocol with ProVerif
Abstract:
Resistance of denial of service attacks is a key security requirement in voting protocols. Acquisti protocol plays an important role in development of internet voting protocols and claims its security without strong physical assumptions. In this study firstly Acquisti protocol is modeled in extended applied pi calculus, and then resistance of denial of service attacks is proved with ProVerif. The result is that it is not resistance of denial of service attacks because two denial of service attacks are found. Finally we give the method against the denial of service attacks.
Keywords: Applied pi calculus, protocol state, symbolic model, availability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12571878 Numerical Study on Improving Indoor Thermal Comfort Using a PCM Wall
Authors: M. Faraji, F. Berroug
Abstract:
A one-dimensional mathematical model was developed in order to analyze and optimize the latent heat storage wall. The governing equations for energy transport were developed by using the enthalpy method and discretized with volume control scheme. The resulting algebraic equations were next solved iteratively by using TDMA algorithm. A series of numerical investigations were conducted in order to examine the effects of the thickness of the PCM layer on the thermal behavior of the proposed heating system. Results are obtained for thermal gain and temperature fluctuation. The charging discharging process was also presented and analyzed.
Keywords: Phase change material, Building, Concrete, Latent heat, Thermal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21451877 Impacts of the Courtyard with Glazed Roof on House Winter Thermal Conditions
Authors: Bin Su
Abstract:
The 'wind-rain' house has a courtyard with glazed roof, which allows more direct sunlight to come into indoor spaces during the winter. The glazed roof can be partially opened or closed and automatically controlled to provide natural ventilation in order to adjust for indoor thermal conditions and the roof area can be shaded by reflective insulation materials during the summer. Two field studies for evaluating indoor thermal conditions of the two 'windrain' houses have been carried out by author in 2009 and 2010. Indoor and outdoor air temperature and relative humidity adjacent to floor and ceiling of the two sample houses were continuously tested at 15-minute intervals, 24 hours a day during the winter months. Based on field study data, this study investigates relationships between building design and indoor thermal condition of the 'windrain' house to improve the future house design for building thermal comfort and energy efficiencyKeywords: Courtyard, house design, indoor thermal comfort, 'wind-rain' house
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16961876 Thermal Regions for Unmanned Aircraft Systems Route Planning
Authors: Resul Fikir
Abstract:
Unmanned Aircraft Systems (UAS) become indispensable parts of modern airpower as force multiplier. One of the main advantages of UAS is long endurance. UAS have to take extra payloads to accomplish different missions but these payloads decrease endurance of aircraft because of increasing drag. There are continuing researches to increase the capability of UAS. There are some vertical thermal air currents, which can cause climb and increase endurance, in nature. Birds and gliders use thermals to gain altitude with no effort. UAS have wide wings which can use thermals like birds and gliders. Thermal regions, which is area of 2000-3000 meter (1 NM), exist all around the world. It is natural and infinite source. This study analyses if thermal regions can be adopted and implemented as an assistant tool for UAS route planning. First and second part of study will contain information about the thermal regions and current applications about UAS in aviation and climbing performance with a real example. Continuing parts will analyze the contribution of thermal regions to UAS endurance. Contribution is important because planning declaration of UAS navigation rules will be in 2015.
Keywords: Airways, Thermals, UAS, UAS Roadmap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16051875 Biodegradable Cellulose-Based Materials for the Use in Food Packaging
Authors: Azza A. Al-Ghamdi, Abir S. Abdel-Naby
Abstract:
Cellulose acetate (CA) is a natural biodegradable polymer. It forms transparent films by the casting technique. CA suffers from high degree of water permeability as well as the low thermal stability at high temperatures. To adjust the CA polymeric films to the manufacture of food packaging, its thermal and mechanical properties should be improved. The modification of CA by grafting it with N-Amino phenyl maleimide (N-APhM) led to the construction of hydrophobic branches throughout the polymeric matrix which reduced its wettability as compared to the parent CA. The branches built onto the polymeric chains had been characterized by UV/Vis, 13C-NMR and ESEM. The improvement of the thermal properties was investigated and compared to the parent CA using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), differential thermal analysis (DTA), contact angle and mechanical testing measurements. The results revealed that the water-uptake was reduced by increasing the graft percentage. The thermal and mechanical properties were also improved.
Keywords: Cellulose acetate, food packaging, graft copolymerization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15941874 Influence of IMV on Space Station
Authors: Fu Shiming, Pei Yifei
Abstract:
To study the impact of the inter-module ventilation (IMV) on the space station, the Computational Fluid Dynamic (CFD) model under the influence of IMV, the mathematical model, boundary conditions and calculation method are established and determined to analyze the influence of IMV on cabin air flow characteristics and velocity distribution firstly; and then an integrated overall thermal mathematical model of the space station is used to consider the impact of IMV on thermal management. The results show that: the IMV has a significant influence on the cabin air flow, the flowrate of IMV within a certain range can effectively improve the air velocity distribution in cabin, if too much may lead to its deterioration; IMV can affect the heat deployment of the different modules in space station, thus affecting its thermal management, the use of IMV can effectively maintain the temperature levels of the different modules and help the space station to dissipate the waste heat.
Keywords: CFD, Environment control and life support, Space station, Thermal management, Thermal mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20611873 Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model
Authors: A. F. Khadrawi
Abstract:
The transient hydrodynamics and thermal behaviors of fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. The Effects of Knudsen number , Darcy number , and thermal relaxation time on the microchannel hydrodynamics and thermal behaviors are investigated using the hyperbolic heat conduction models. It is found that as increases the slip in the hydrodynamic and thermal boundary condition increases. This slip in the hydrodynamic boundary condition increases as increases. Also, the slip in the thermal boundary condition increases as decreases especially the early stage of time.Keywords: free convection, hyperbolic heat conduction, macroscopic heat conduction models in microchannel, porous media, vertical microchannel, microchannel thermal, hydrodynamic behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19281872 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detection is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15μm/10m and the accuracy of the machine tool is significant improved.Keywords: Thermal expansion error of grating scale, error compensation, machine tools, integral method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651871 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method
Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava
Abstract:
In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23301870 In silico Analysis of Isoniazid Resistance in Mycobacterium tuberculosis
Authors: A. Nusrath Unissa, Sameer Hassan, Luke Elizabeth Hanna
Abstract:
Altered drug binding may be an important factor in isoniazid (INH) resistance, rather than major changes in the enzyme’s activity as a catalase or peroxidase (KatG). The identification of structural or functional defects in the mutant KatGs responsible for INH resistance remains as an area to be explored. In this connection, the differences in the binding affinity between wild-type (WT) and mutants of KatG were investigated, through the generation of three mutants of KatG, Ser315Thr [S315T], Ser315Asn [S315N], Ser315Arg [S315R] and a WT [S315]) with the help of software-MODELLER. The mutants were docked with INH using the software-GOLD. The affinity is lower for WT than mutant, suggesting the tight binding of INH with the mutant protein compared to WT type. These models provide the in silico evidence for the binding interaction of KatG with INH and implicate the basis for rationalization of INH resistance in naturally occurring KatG mutant strains of Mycobacterium tuberculosis.
Keywords: Mycobacterium tuberculosis, KatG, INH resistance, Mutants, Modeling, Docking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29931869 Experimental Study of Thermal Environment in a Room with Mixing Ventilation
Authors: Dong-Mei Pan, Liang XIA, Ming-Yin Chan
Abstract:
This paper reports an experimental study on a sleeping thermal manikin in a room equipped with a mixing ventilation system. In the experimental work, heat loss from the sleeping thermal manikin was measured under different conditions. The supply air temperature was in a range of 17°C to 27°C. Apart from the heat loss of the sleeping thermal manikin, the velocity distributions and temperature distributions were also measured in the experiments for subsequent analysis.Keywords: Sleeping Environment, Mixing Ventilation System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764