Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2103

Search results for: Hybrid Photovoltaic/Thermal (PV/T)

2103 Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

Authors: K. Touafek, A. Khelifa, E. H. Khettaf, A. Embarek

Abstract:

Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.

Keywords: Experimental, Photovoltaic, Solar, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
2102 Performance and Economic Evaluation of a Hybrid Photovoltaic/Thermal Solar System in Northern China

Authors: E. Sok, Y. Zhuo, S. Wang

Abstract:

A hybrid Photovoltaic/Thermal (PV/T) solar system integrates photovoltaic and solar thermal technologies into one single solar energy device, with dual generation of electricity and heat energy. The aim of the present study is to evaluate the potential for introduction of the PV/T technology into Northern China. For this purpose, outdoor experiments were conducted on a prototype of a PV/T water-heating system. The annual thermal and electrical performances were investigated under the climatic conditions of Beijing. An economic analysis of the system was then carried out, followed by a sensitivity study. The analysis revealed that the hybrid system is not economically attractive with the current market and energy prices. However, considering the continuous commitment of the Chinese government towards policy development in the renewable energy sector, and technological improvements like the increasing cost-effectiveness of PV cells, PV/Thermal technology may become economically viable in the near future.

Keywords: Hybrid Photovoltaic/Thermal (PV/T), Solar energy, Economic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
2101 Thermal Performance of Hybrid PVT Collector with Natural Circulation

Authors: K. Touafek, A. Khelifa, I. Tabet, H. Haloui, H. Bencheikh El Houcine, M. Adouane

Abstract:

Hybrid photovoltaic thermal (PVT) collectors allow simultaneous production of electrical energy thus heat energy. There are several configurations of hybrid collectors (to produce water or air). For hybrids water collectors, there are several configurations that differ by the nature of the absorber (serpentine, tubes...). In this paper, an absorber tank is studied. The circulation of the coolant is natural (we do not use the pump). We present the obtained results in our experimental study and we analyzed the data, and then we compare the results with the theory practices. The electrical performances of the hybrid collector are compared with those of conventional photovoltaic module mounted on the same structure and measured under the same conditions.

We conducted experiments with natural circulation of the coolant (Thermosyphon), for a flow rate of 0.025kg/m².

Keywords: Experimental, Photovoltaic, Solar, Temperature, Tank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
2100 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer

Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari

Abstract:

Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.

Keywords: Characteristics curve, Photovoltaic, Thermal modelling, Thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
2099 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector

Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy

Abstract:

Energy is required in almost every aspect of human activities and development of any nation in the world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches which taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and MATLAB SIMULINK of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on both thermal and electrical efficiency.

Keywords: Renewable energy, Hybrid PV/T system, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3650
2098 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari

Abstract:

In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.

Keywords: Compound parabolic concentrator, Energy, Photovoltaic thermal, Temperature dependent electrical efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
2097 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito

Abstract:

For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

Keywords: Hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483
2096 Non-Sensitive Solutions in Multi-Objective Optimization of a Solar Photovoltaic/Thermal(PV/T) Air Collector

Authors: F. Sarhaddi, S. Farahat, M .A. Alavi, F. Sobhnamayan

Abstract:

In this paper, an attempt has been made to obtain nonsensitive solutions in the multi-objective optimization of a photovoltaic/thermal (PV/T) air collector. The selected objective functions are overall energy efficiency and exergy efficiency. Improved thermal, electrical and exergy models are used to calculate the thermal and electrical parameters, overall energy efficiency, exergy components and exergy efficiency of a typical PV/T air collector. A computer simulation program is also developed. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Finally, multi-objective optimization has been carried out under given climatic, operating and design parameters. The optimized ranges of inlet air velocity, duct depth and the objective functions in optimal Pareto front have been obtained. Furthermore, non-sensitive solutions from energy or exergy point of view in the results of multi-objective optimization have been shown.

Keywords: Solar photovoltaic thermal (PV/T) air collector, Overall energy efficiency, Exergy efficiency, Multi-objectiveoptimization, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
2095 Comparison between Batteries and Fuel Cells for Photovoltaic System Backup

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Batteries and fuel cells contain a great potential to back up severe photovoltaic power fluctuations under inclement weather conditions. In this paper comparison between batteries and fuel cells is carried out in detail only for their PV power backup options, so their common attributes and different attributes is discussed. Then, the common and different attributes are compared; accordingly, the fuel cell is selected as the backup of Photovoltaic system. Finally, environmental evaluation of the selected hybrid plant was made in terms of plant-s land requirement and lifetime CO2 emissions, and then compared with that of the conventional fossilfuel power generating forms.

Keywords: Fuel cell, PV cell, hybrid power plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3915
2094 Optimal Sizing of a Hybrid Wind/PV Plant Considering Reliability Indices

Authors: S. Dehghan, B. Kiani, A. Kazemi, A. Parizad

Abstract:

The utilization of renewable energy sources in electric power systems is increasing quickly because of public apprehensions for unpleasant environmental impacts and increase in the energy costs involved with the use of conventional energy sources. Despite the application of these energy sources can considerably diminish the system fuel costs, they can also have significant influence on the system reliability. Therefore an appropriate combination of the system reliability indices level and capital investment costs of system is vital. This paper presents a hybrid wind/photovoltaic plant, with the aim of supplying IEEE reliability test system load pattern while the plant capital investment costs is minimized by applying a hybrid particle swarm optimization (PSO) / harmony search (HS) approach, and the system fulfills the appropriate level of reliability.

Keywords: Distributed Generation, Fuel Cell, HS, Hybrid Power Plant, PSO, Photovoltaic, Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
2093 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model

Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth

Abstract:

This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.

Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
2092 Power Management Strategy for Solar-Wind-Diesel Stand-alone Hybrid Energy System

Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim

Abstract:

This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.

Keywords: Solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4392
2091 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room

Authors: Himanshu Dehra

Abstract:

An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.

Keywords: Photovoltaic solar wall, solar energy, passive ventilation, active ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
2090 Proton-conducting PVA/PMA Hybrid Membranes for Fuel Cell Applications

Authors: Uma Thanganathan

Abstract:

The hybrid membranes containing inorganic materials in polymer matrix are identified as a remarkable family of proton conducting hybrid electrolytes. In this work, the proton conducting inorganic/organic hybrid membranes for proton exchange membrane fuel cells (PEMFCs) were prepared using polyvinyl alcohol (PVA), tetraethoxyorthosilane (TEOS) and heteropolyacid (HPA). The synthesized hybrid membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM) and Thermogravimetry analysis (TGA). The effects of heteropolyacid incorporation on membrane properties, including morphology and thermal stability were extensively investigated.

Keywords: PEMFC, Hybrid membrane, FTIR, TGA, Phosphomolybdic acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
2089 Signal and Thermodynamic Analysis for Evaluation of Thermal and Power of Gas Turbine-Solid Oxide Fuel Cell Hybrid System

Authors: R. Mahjoub, K. Maghsoudi Mehraban

Abstract:

In recent years, solid oxide fuel cells have been used as one of the main technologies for the production of electrical energy with high-efficiency ratio, which is used hydrogen and other hydrocarbons as fuels. The fuel cell technology can be used either alone or in hybrid gas turbines systems. In this study, thermodynamics analysis for GT-SOFC hybrid system is developed, and then mass balance and exergy equations have been applied not only on the process but also on the individual components of the hybrid system, which enable us to estimate the thermal efficiency of the hybrid systems. Furthermore, various sources of irreversibility in the solid oxide fuel cell system are discussed, and modeling and parametric analyses like heat and pressure are carried out. This study enables us to consider the irreversible effects of solid oxide fuel cells, and also it leads to the specification of efficiency of the system accurately. Next in the study, both methane and hydrogen as a fuel for SOFC are used and implemented, and finally, our results are compared with other references.

Keywords: hybrid system, gas turbine, entropy and exergy analysis, irreversibility analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4
2088 Increase in Solar Thermal Energy Storage by using a Hybrid Energy Storage System

Authors: Hassan Zohoor, Zaeem M. Moosavi

Abstract:

The intermittent nature of solar energy and the energy requirements of buildings necessitate the storage of thermal energy. In this paper a hybrid system of storing solar energy has been analyzed. Adding a LHS medium to a commercial solar water heater, the required energy for heating a small room was obtained in addition to preparing hot water. In other words, the suggested hybrid storage system consists of two tanks: a water tank as a SHS medium; and a paraffin tank as a LHS medium. A computing program was used to find the optimized time schedule of charging the storage tanks during each day, according to the solar radiation conditions. The results show that the use of such system can improve the capability of energy gathering comparing to the individual water storage tank during the cold months of the year. Of course, because of the solar radiation angles and shorten daylight in December & January, the performance will be the same as the simple solar water heaters (in the northern hemisphere). But the extra energy stored in November, February, March & April, can be useful for heating a small room for 3 hours during the cold days.

Keywords: Hybrid, Optimization, Solar thermal energy, Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
2087 Mechanical and Thermal Properties of Hybrid Blends of LLDPE/Starch/PVA

Authors: Rahmah, M., Farhan, M., Akidah, N.M.Y

Abstract:

Polybag and mulch film in agricultural field are used plastics which caused environmental problems after transplantation and planting processes due to the discarded wastes. Thus a degradable polybag was designed in this study to replace non degradable polybag with natural biodegradable resin that is widely available, namely sago starch (SS) and polyvinyl alcohol (PVA). Hybrid blend consists of SS, PVA and linear low density polyethylene (LLDPE) was compounded at different ratios. The thermal and mechanical properties of the blends were investigated. Hybrid films underwent landfill degradation tests for up to 2 months. The films showed gelation and melting transition existed for all three systems with significant melting peaks by LLDPE and PVA. All hybrid blends loses its LLDPE semi crystalline characteristics as PVA and SS systems had disrupted crystallinity and enhanced the amorphosity of the hybrid system. Generally, blending SS with PVA improves the mechanical properties of the SS based materials. Tensile strength of each film was also decreased with the increase of SS contents while its modulus had increased with SS content.

Keywords: Appearance peak, LLDPE, PVA, sago starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794
2086 Hybrid Power – Application for Tourism in Isolated Areas

Authors: Aurelian Octavian Ciucâ, Ioan Bitir-Istrate, Mircea Scripcariu

Abstract:

The rapidly increasing costs of power line extensions and fossil fuel, combined with the desire to reduce carbon dioxide emissions pushed the development of hybrid power system suited for remote locations, the purpose in mind being that of autonomous local power systems. The paper presents the suggested solution for a “high penetration" hybrid power system, it being determined by the location of the settlement and its “zero policy" on carbon dioxide emissions. The paper focuses on the technical solution and the power flow management algorithm of the system, taking into consideration local conditions of development.

Keywords: Renewable energy, hybrid power system, wind turbine, photovoltaic panels, bio-diesel cogeneration, bio-fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2085 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication

Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi

Abstract:

Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.

Keywords: Hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
2084 An Overview of Islanding Detection Methods in Photovoltaic Systems

Authors: Wei Yee Teoh, Chee Wei Tan

Abstract:

The issue of unintentional islanding in PV grid interconnection still remains as a challenge in grid-connected photovoltaic (PV) systems. This paper discusses the overview of popularly used anti-islanding detection methods, practically applied in PV grid-connected systems. Anti-islanding methods generally can be classified into four major groups, which include passive methods, active methods, hybrid methods and communication base methods. Active methods have been the preferred detection technique over the years due to very small non-detected zone (NDZ) in small scale distribution generation. Passive method is comparatively simpler than active method in terms of circuitry and operations. However, it suffers from large NDZ that significantly reduces its performance. Communication base methods inherit the advantages of active and passive methods with reduced drawbacks. Hybrid method which evolved from the combination of both active and passive methods has been proven to achieve accurate anti-islanding detection by many researchers. For each of the studied anti-islanding methods, the operation analysis is described while the advantages and disadvantages are compared and discussed. It is difficult to pinpoint a generic method for a specific application, because most of the methods discussed are governed by the nature of application and system dependent elements. This study concludes that the setup and operation cost is the vital factor for anti-islanding method selection in order to achieve minimal compromising between cost and system quality.

Keywords: Active method, hybrid method, islanding detection, passive method, photovoltaic (PV), utility method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9378
2083 Assessment of Solar Hydrogen Production in an Energetic Hybrid PV-PEMFC System

Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui

Abstract:

This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.

Keywords: Electrolyzer, Hydrogen, Hydrogen Fueled Cell, Photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
2082 Power Forecasting of Photovoltaic Generation

Authors: S. H. Oudjana, A. Hellal, I. Hadj Mahammed

Abstract:

Photovoltaic power generation forecasting is an important task in renewable energy power system planning and operating. This paper explores the application of neural networks (NN) to study the design of photovoltaic power generation forecasting systems for one week ahead using weather databases include the global irradiance, and temperature of Ghardaia city (south of Algeria) using a data acquisition system. Simulations were run and the results are discussed showing that neural networks Technique is capable to decrease the photovoltaic power generation forecasting error.

Keywords: Photovoltaic Power Forecasting, Regression, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3335
2081 Comparative Analysis of Photovoltaic Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents comparative analysis of photovoltaic systems (PVS) and propose practical techniques to improve operational efficiency of the PVS. The best engineering and construction practices for PVS are identified and field oriented recommendation are made. Comparative analysis of central and string inverter based, as well as 600 and 1000VDC PVS are performed. In addition, direct current (DC) and alternating current (AC) photovoltaic (PV) module based systems are compared. Comparison shows that 1000V DC String Inverters based PVS is the best choice.

Keywords: Photovoltaic module, photovoltaic systems, operational efficiency improvement, comparative analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
2080 Feasibility Study and Developing Appropriate Hybrid Energy Systems in Regional Level

Authors: Ahmad Rouhani

Abstract:

Iran has several potential for using renewable energies, so use them could significantly contribute to energy supply. The purpose of this paper is to identify the potential of the country and select the appropriate DG technologies with consideration the potential and primary energy resources in the regions. In this context, hybrid energy systems proportionate with the potential of different regions will be determined based on technical, economic, and environmental aspect. In the following the proposed structure will be optimized in terms of size and cost. DG technologies used in this project include photovoltaic system, wind turbine, diesel generator and battery bank. The HOMER software is applied for choosing the appropriate structure and the optimization of system sizing. The results have been analyzed in terms of technical and economic. The performance and the cost of each project demonstrate the appropriate structure of hybrid energy system in that region.

Keywords: Feasibility, Hybrid Energy System, Iran, Renewable Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
2079 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: Gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated& sustainable electric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
2078 A Case Study on Suitable Area and Resource for Development of Floating Photovoltaic System

Authors: Young-Kwan Choi

Abstract:

In development of floating photovoltaic generation system, finding a suitable place of installation is as important as development of economically feasible and stable structure. Especially since floating photovoltaic system has its facility floating on water surface, it is extremely important to review the effects of weather conditions such as wind, water flow and floating matters, various factors (such as fogs) that can reduce generation efficiency, possibility of connection with power system, and legal restrictions. The method of investigating suitable area and resource for development of tracking-type floating photovoltaic generation system was proposed in this paper, which can be used for development of floating and ocean photovoltaic system in the future.

Keywords: Floating PV system, On-site Survey, Resources Survey of Photovoltaic, Tracking-type Floating PV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
2077 A Multivariate Moving Average Control Chart for Photovoltaic Processes

Authors: Chunchom Pongchavalit

Abstract:

For the electrical metrics that describe photovoltaic cell performance are inherently multivariate in nature, use of a univariate, or one variable, statistical process control chart can have important limitations. Development of a comprehensive process control strategy is known to be significantly beneficial to reducing process variability that ultimately drives up the manufacturing cost photovoltaic cells. The multivariate moving average or MMA chart, is applied to the electrical metrics of photovoltaic cells to illustrate the improved sensitivity on process variability this method of control charting offers. The result show the ability of the MMA chart to expand to as any variables as needed, suggests an application with multiple photovoltaic electrical metrics being used in concert to determine the processes state of control.

Keywords: The multivariate moving average control chart, Photovoltaic processes control, Multivariate system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
2076 Modeling and Simulation of a Hybrid Scooter

Authors: W. K. Yap, V. Karri

Abstract:

This paper presents a hybrid electric scooter model developed and simulated using Matlab/Simulink. This hybrid scooter modeled has a parallel hybrid structure. The main propulsion units consist of a two stroke internal combustion engine and a hub motor attached to the front wheel of the scooter. The methodology used to optimize the energy and fuel consumption of the hybrid electric scooter is the multi-mode approach. Various case studies were presented to check the model and were compared to the literatures. Results shown that the model developed was feasible and valuable.

Keywords: Hybrid electric scooters, modeling and simulation, hybrid scooter energy management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3068
2075 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System

Authors: Ahmad Rouhani, Masoud Jabbari, Sima Honarmand

Abstract:

This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technical and economic. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.

Keywords: Hybrid energy system, optimum sizing, power management, TLBO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
2074 Characteristics of Aluminum Hybrid Composites

Authors: S. O. Adeosun, L. O. Osoba, O. O. Taiwo

Abstract:

Aluminum hybrid reinforcement technology is a response to the dynamic ever increasing service requirements of such industries as transportation, aerospace, automobile, marine, etc. It is unique in that it offers a platform of almost unending combinations of materials to produce various hybrid composites. This article reviews the studies carried out on various combinations of aluminum hybrid composite and the effects on mechanical, physical and chemical properties. It is observed that the extent of enhancement of these properties of hybrid composites is strongly dependent on the nature of the reinforcement, its hardness, particle size, volume fraction, uniformity of dispersion within the matrix and the method of hybrid production.

Keywords: Aluminum alloy, hybrid composites, properties, reinforcements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4726