Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33123
Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. UAV techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. In this paper, a methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of RGB and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: Aerial thermography, data processing, drone, low-cost, point cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351

References:


[1] Ali, R.; Zeng, J.; Kavgic, M.; Cha, Y.-J. Heat Loss Detection Using Thermal Imaging by a Small UAV Prototype. Smart Struct. NDE Ind. 4.0, Smart Cities, Energy Syst. Proj. Deep Learn. based SHM 2020, 11382, 9, doi:10.1117/12.2557902.
[2] Sooahm Rhee, Yunhuk Hwang, S. kim A Study on Point Cloud Generation Method from UAV Image Using Incremental Bundle Adjustment and Stereo Image Matching Technique. Korean J. Remote Sens. 2018, 34, 941–951, doi: https://doi.org/10.7780/kjrs.2018.34.6.1.8.
[3] Chen, S.; Laefer, D.F.; Mangina, E.; Zolanvari, S.M.I.; Byrne, J. UAV Bridge Inspection through Evaluated 3D Reconstructions. J. Bridg. Eng. 2019, 24, 05019001, doi:10.1061/(asce)be.1943-5592.0001343.
[4] Benassi, F.; Dall’Asta, E.; Diotri, F.; Forlani, G.; Cella, U.M. di; Roncella, R.; Santise, M. Testing Accuracy and Repeatability of UAV Blocks Oriented with Gnss-Supported Aerial Triangulation. Remote Sens. 2017, 9, 1–23, doi:10.3390/rs9020172.
[5] de Luis-Ruiz, J.M.; Sedano-Cibrián, J.; Pérez-Álvarez, R.; Pereda-García, R.; Malagón-Picón, B. Metric Contrast of Thermal 3D Models of Large Industrial Facilities Obtained by Means of Low-Cost Infrared Sensors in UAV Platforms. Int. J. Remote Sens. 2021, 00, 1–27, doi:10.1080/01431161.2021.2003903.
[6] Pérez-Álvarez, R.; Sedano-cibrián, J.; De Luis-Ruiz, J.M.; Fernández-Maroto, G. Mining Exploration with UAV, Low-Cost Thermal Cameras and GIS Tools — Application to the Specific Case of the Complex Sulfides Hosted in Carbonates of Ud í as (Cantabria, Spain). Minerals 2022, 12, 140, doi: https://doi.org/10.3390/min12020140.
[7] Rakha, T.; Gorodetsky, A. Review of Unmanned Aerial System (UAS) Applications in the Built Environment: Towards Automated Building Inspection Procedures Using Drones. Autom. Constr. 2018, 93, 252–264, doi:10.1016/j.autcon.2018.05.002.
[8] Zefri, Y.; Elkettani, A.; Sebari, I.; Lamallam, S.A. Thermal Infrared and Visual Inspection of Photovoltaic Installations by Uav Photogrammetry—Application Case: Morocco. Drones 2018, 2, 1–24, doi:10.3390/drones2040041
[9] Hill, A.C.; Laugier, E.J.; Casana, J. Archaeological Remote Sensing Using Multi-Temporal, Drone-Acquired Thermal and near Infrared (NIR) Imagery: A Case Study at the Enfield Shaker Village, New Hampshire. Remote Sens. 2020, 12, doi:10.3390/rs12040690
[10] Lin, D.; Bannehr, L.; Ulrich, C.; Maas, H.G. Evaluating Thermal Attribute Mapping Strategies for Oblique Airborne Photogrammetric System AOS-Tx8. Remote Sens. 2020, 12, 1–19, doi:10.3390/RS12010112.
[11] Maset, E.; Fusiello, A.; Crosilla, F.; Toldo, R.; Zorzetto, D. Photogrammetric 3D Building Reconstruction from Thermal Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 25–32, doi:10.5194/isprs-annals-IV-2-W3-25-2017.
[12] Yang, M. Der; Su, T.C.; Lin, H.Y. Fusion of Infrared Thermal Image and Visible Image for 3D Thermal Model Reconstruction Using Smartphone Sensors. Sensors (Switzerland) 2018, 18, doi:10.3390/s18072003.
[13] Yang, Y.; Lee, X. Four-Band Thermal Mosaicking: A New Method to Process Infrared Thermal Imagery of Urban Landscapes from UAV Flights. Remote Sens. 2019, 11, doi:10.3390/rs11111365.
[14] Previtali, M.; Barazzetti, L.; Brumana, R.; Cuca, B.; Oreni, D.; Roncoroni, F.; Scaioni, M. Automatic Façade Modelling Using Point Cloud Data for Energy-Efficient Retrofitting. Appl. Geomatics 2014, 6, 95–113, doi:10.1007/s12518-014-0129-9.
[15] Daffara, C.; Muradore, R.; Piccinelli, N.; Gaburro, N.; de Rubeis, T.; Ambrosini, D. A Cost-Effective System for Aerial 3d Thermography of Buildings. J. Imaging 2020, 6, doi:10.3390/JIMAGING6080076.
[16] Hoegner, L.; Tuttas, S.; Xu, Y.; Eder, K.; Stilla, U. Evaluation of Methods for Coregistration and Fusion of RPAS-Based 3D Point Clouds and Thermal Infrared Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 2016, 41, 241–246, doi:10.5194/isprsarchives-XLI-B3-241-2016.
[17] Vélez-Nicolás, M.; García-López, S.; Barbero, L.; Ruiz-Ortiz, V.; Sánchez-Bellón, Á. Applications of Unmanned Aerial Systems (UASs) in Hydrology: A Review. Remote Sens. 2021, 13, doi:10.3390/rs13071359.
[18] Luis-Ruiz, J.M. de; Sedano-Cibrián, J.; Pereda-García, R.; Pérez-Álvarez, R.; Malagón-Picón, B. Optimization of Photogrammetric Flights with UAVs for the Metric Virtualization of Archaeological Sites. Application to Juliobriga (Cantabria, Spain). Appl. Sci. 2021, 11, 1204, doi:10.3390/app11031204.
[19] Nex, F.; Remondino, F. UAV for 3D Mapping Applications: A Review. Appl. Geomatics 2014, 6, 1–15, doi:10.1007/s12518-013-0120-x. R. W. Lucky, “Automatic equalization for digital communication,” Bell Syst. Tech. J., vol. 44, no. 4, pp. 547–588, Apr. 1965.
[20] Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Marcial-Pablo, M.D.J.; Enciso, J. Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS Int. J. Geo-Information 2021, 10, doi:10.3390/ijgi10050285.
[21] Dahaghin, M.; Samadzadegan, F.; Dadras Javan, F. 3D Thermal Mapping of Building Roofs Based on Fusion of Thermal and Visible Point Clouds in Uav Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 2019, 42, 271–277, doi:10.5194/isprs-archives-XLII-4-W18-271-2019.