Resistive Switching in TaN/AlNx/TiN Cell
Authors: Hsin-Ping Huang, Shyankay Jou
Abstract:
Resistive switching of aluminum nitride (AlNx) thin film was demonstrated in a TaN/AlNx/TiN memory cell that was prepared by sputter deposition techniques. The memory cell showed bipolar switching of resistance between +3.5 V and –3.5 V. The resistance ratio of high resistance state (HRS) to low resistance state (HRS), RHRS/RLRS, was about 2 over 100 cycles of endurance test. Both the LRS and HRS of the memory cell exhibited ohmic conduction at low voltages and Poole-Frenkel emission at high voltages. The electrical conduction in the TaN/AlNx/TiN memory cell was possibly attributed to the interactions between charges and defects in the AlNx film.
Keywords: Aluminum nitride, nonvolatile memory, resistive switching, thin films.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093552
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718References:
[1] J. J. Yang, D. B. Strukov, and D. R. Stewart, "Memristive devices for computing,” Nature Nanotechnol., vol. 8, no. 1, 13–24, Jan. 2013.
[2] A. Sawa, "Resistive switching in transition metal oxides,” Mater. Today, vol. 11, no. 6, pp. 28-36, Jun. 2008.
[3] H. S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, B. Lee, F. T. Chen, and M.-J. Tsai, "Metal-oxide RRAM,” Proc. IEEE, vol. 100, no. 6, pp. 1951-1970, Jun. 2012.
[4] C. Chen, Y. C. Chang, F. Zeng, and F. Pan, "Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device,” Appl. Phys. Lett., vol. 97, no. 8, pp. 083502-1–083502-3, Aug. 2010.
[5] H.-D. Kim, H.-M. An, E. B. Lee, and T. G. Kim, "Stable resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices,” IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 3566–3573, Oct. 2011.
[6] M. J. Marinella, J. E. Stevens, E. M. Longoria, and P. G. Kotula, "Resistive switching in aluminum nitride,” in Dig. 70th Annual Device Research Conf., University Park, TX, 2012, pp. 89–90.
[7] B. J. Choi, J. J. Yang, M.-X. Zhang, K. J. Norris, D. A. A. Ohlberg, N. P. Kobayashi, G. Medeiros-Ribeiro, and R. S. Williams, "Nitride memristors,” Appl. Phys. A, vol. 109, no. 1, pp. 1–4, Oct. 2012.
[8] C. Chen, S. Gao, G. Tang, H. Fu, G. Wang, C. Song, F. Zeng, and F. Pan, "Effect of electrode materials on AlN-based bipolar and complementary resistive swithching,” ACS Appl. Mater. Interfaces, vol 5, no. 5, pp. 1793-1799, 2013.
[9] H.-D. Kim, H.-M. An, Y. Seo, and T. G. Kim, "Transparent resistive switching memory using ITO/AlN/ITO capacitor,” IEEE Electron Device Lett., vol. 32, no. 8, pp. 1125–1127, Aug. 2011.
[10] B. Sun, L. F. Liu, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, and J. F. Kang, "Bipolar resistive switching behaviors of Ag/Si3N4/Pt memory device,” in Proc.9th Int. Conf. Solid-State and Integrated-Circuit Tech., Beijing, 2008, pp. 925–927.
[11] H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, "Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol., vol. 25, no. 6, pp. 065002-1–065002-5, Jun. 2010.
[12] H.-D. Kim, H.-M. An, and T. G. Kim, "Improved reliability of Au/Si3N4/Ti resistive switching memory cells due to a hydrogen postannealing treatment,” J. Appl. Phys., vol. 109, no. 1, pp. 016105-1–016105-3, Jan. 2010.
[13] H.-D. Kim, H.-M. and An, and T. G. Kim, "Resistive switching behavior in Ti/Si3N4/Ti memory structures for ReRAM application,” Microelectron. Eng., vol. 98, pp. 351–354, Oct. 2012.
[14] H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, "Unipolar resistive switching phenomena in fully transparent SiN-based memory cells,” Semicond. Sci. Technol., vol. 27, no. 12, pp. 125020-1–125020-6, Dec. 2012.
[15] S. Jou and M.-E. Han, "Influence of interfacial tantalum oxynitride on resistive switching of Cu/Cu-SiO2/TaN,” Jpn. J. Appl. Phys., vol. 51, no. 5., pp. 055701-1–055701-4, May 2012.
[16] S. Jou and C.-L. Chao, "Resistance switching of copper-doped tantalum oxide prepared by oxidation of copper-doped tantalum nitride,” Surf. Coat. Technol., vol. 231, pp. 311-315, Sep. 2013.
[17] X.-D. Wang, K. W. Hipps, and U. Mazur, "Infrared and morphological studies of hydrogenated AlN thin film,” Langmuir, vol. 8, no. 5, pp. 1347-1353, May 1992.
[18] A. Mahmood, N. Rakov, and M. Xiao, "Influence of deposition conditions on optical properties of aluminum nitride (AlN) thin films prepared by DC-reactive magnetron sputtering,” Mater. Lett., vol. 57, no. 1314, pp. 1925-1933, Apr. 2003.
[19] L. Rosenberger, R. Baird, E. McCullen, G. Auner, and G. Shreve, "XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy,” Surf. Interface. Anal., vol. 40, no. 9, pp. 1254-1261, Sep. 2008.
[20] D. Chen, J. Wang, D. Xu, and Y. Zhang, "The influence of defects and impurities in polycrystalline AlN films on the violet and blue emission,” Vacuum, vol. 83, no. 5, pp. 865–868,Jan. 2009.
[21] J. H. Harris, R. A. Youngman, and R. G. Teller, "On the nature of oxygen-related defect in aluminum nitride,” J. Mater. Res., vol. 5, no. 8, pp. 1768–1773, Aug. 2008.
[22] C. K. Hwangbo, L. J. Lingg, J. P. Lehan, H. A. Macleod, and F. Suits, "Reactive ion assisted deposition of aluminum oxynitride thin films,” Appl. Opt., vol. 28, no. 14, pp. 2779–2784, Jul. 1989.
[23] P. C. Joshi and B. Krupanidhi, "Structural and electrical characteristics of SrTiO3 thin films for dynamic random access memory applications,” J. Appl. Phys., vol. 73, no. 11, pp. 7627-7634, Jun. 1993.
[24] N. B. Hassine, D. Mercier, P. Renaux, G. Parat, S. Basrour, P. Waltz, C. Chappaz, P. Ancey, and S. Blonkowski, "Dielectrical properties of metal-insulator-metal aluminum nitride structures: measurement and modeling,” J. Appl. Phys., vol. 105, no.4 , pp. 044111-1–044111-10, Feb. 2009.
[25] N. H. Chen, Z. W. Zheng, C. H. Cheng, and F. S. Yeh, "Sub-micro watt resistive memories using nano-crystallized aluminum oxynitride dielectric,” Appl. Phys. A., published online, Dec. 2013.