Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31100
In silico Analysis of Isoniazid Resistance in Mycobacterium tuberculosis

Authors: A. Nusrath Unissa, Sameer Hassan, Luke Elizabeth Hanna


Altered drug binding may be an important factor in isoniazid (INH) resistance, rather than major changes in the enzyme’s activity as a catalase or peroxidase (KatG). The identification of structural or functional defects in the mutant KatGs responsible for INH resistance remains as an area to be explored. In this connection, the differences in the binding affinity between wild-type (WT) and mutants of KatG were investigated, through the generation of three mutants of KatG, Ser315Thr [S315T], Ser315Asn [S315N], Ser315Arg [S315R] and a WT [S315]) with the help of software-MODELLER. The mutants were docked with INH using the software-GOLD. The affinity is lower for WT than mutant, suggesting the tight binding of INH with the mutant protein compared to WT type. These models provide the in silico evidence for the binding interaction of KatG with INH and implicate the basis for rationalization of INH resistance in naturally occurring KatG mutant strains of Mycobacterium tuberculosis.

Keywords: Modeling, Mycobacterium Tuberculosis, docking, KatG, INH resistance, mutants

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589


[1] Prasad R. MDR TB: Current Status. Indian J Tub. 2005, 52:121-31.
[2] Centers for Disease Control and Prevention. Revised Definition of Extensively Drug Resistant Tuberculosis Morb Mortal Weekly Rep 2006, 55, 1176.
[3] Nachega, JB.; Chaisson, R.E. Tuberculosis Drug Resistance: A Global Threat Clin. Infect. Dis. 2003, 36, 24-30.
[4] Ramaswamy, S.; Musser, J.M. Molecular Genetic Basis of Antimicrobial Agent Resistance in Mycobacterium tuberculosis: 1998 update. Tuber.Lung. Dis. 1998, 79, 3-29.
[5] Zhang, Y.; Heym, B.; Allen, B.; Young, D.; Cole, S. The Catalase- Peroxidase Gene and Isoniazid Resistance of Mycobacterium tuberculosis. Nature. 1992, 358, 591-593.
[6] Marttila, H. J.; Soini, H.; Eerola, E. et al. A Ser315Thr Substitution in KatG is Predominant in Genetically Heterogeneous Multidrug-Resistant Mycobacterium tuberculosis Isolates Originating from the St. Petersburg Area in Russia. Antimicrob. Agents. Chemother. 1998, 42, 2443-2445.
[7] Van Soolingen, D.; de Haas, P. E.; Van Doorn, H. R. et al. Mutations at Amino Acid Position 315 of the katG Gene are Associated with High-Level Resistance to Isoniazid, Other Drug Resistance, and Successful Transmission of Mycobacterium tuberculosis in The Netherlands. J. Infect. Dis. 2000, 182, 1788-1790.
[8] Pym, A. S.; Saint-Joanis, B.; Cole, S. T. Effect of katG Mutations on the Virulence of Mycobacterium tuberculosis and the Implication for Transmission in Humans. Infect. Immun. 2002, 70, 4955-4960.
[9] Wengenack, N. L.; Uhl, J.R; Stamand AL, Tomlinson AJ, Benson LM, Naylor S, Kline BC, Cockerill FR, Rusnak F. Recombinant Mycobacterium tuberculosis KatG (S315T) is a Competent Catalase-Peroxidase with Reduced Activity toward Isoniazid. J. Infect. Dis. 1997, 176, 722-727.
[10] Wengenack, N. L.; Todorovic, S.; Yu, L.; Rusnak, F. Evidence for Differential Binding of Isoniazid by Mycobacterium tuberculosis KatG and the Isoniazid-Resistant Mutant KatG(S315T). Biochemistry. 1998, 37, 15825-15834.
[11] Wengenack, N. L.; Jensen, M.P.; Rusnak, F.; Stern, M.K. Mycobacterium tuberculosis KatG is a Peroxynitritase. Biochem. Biophys Res Commun. 1999, 256, 485-487.
[12] Wengenack, N.L.; Lopes, H.; Kennedy, M.J.; Tavares, P.; Pereira, A.S.; Moura, I. et al. Redox Potential Measurements of the Mycobacterium tuberculosis Heme Protein KatG and the Isoniazid-Resistant Enzyme KatG (S315T): Insights into Isoniazid Activation. Biochemistry. 2000, 39, 11508-11513.
[13] Wengenack, N.L.; Rusnak, F. Evidence for Isoniazid-Dependent Free Radical Generation Catalyzed by Mycobacterium tuberculosis KatG and the Isoniazid- Resistant Mutant KatG(S315T). Biochemistry. 2001, 40, 8990-8996.
[14] Saint-Joanis, B.; Souchon, H.; Wilming, M.; Johnsson, K.; Alzari, P.M.; Cole, S. T. Use of Site-Directed Mutagenesis to Probe the Structure, Function and Isoniazid Activation of the Catalase/Peroxidase, KatG, from Mycobacterium tuberculosis. Biochem J. 1999, 338, 753-760.
[15] Lukat-Rodgers, G.S.; Wengenack, N.L.; Rusnak F, Rodgers K. R. Spectroscopic Comparison of the Heme Active Sites in WT KatG and Its S315T Mutant. Biochemistry. 2000, 39, 9984-9993.
[16] Lukat-Rodgers, G. S; Wengenack, N.L; Rusnak, F; Rodgers K.R; Carbon Monoxide Adducts of KatG and KatG(S315T) as Probes of the Heme Site and Isoniazid Binding. Biochemistry. 2001, 40, 7149-7157.
[17] DeVito, J. A.; Morris S. Exploring the Structure and Function of the Mycobacterial KatG Protein Using Trans-Dominant Mutants. Antimicrob. Agents. Chemother. 2003, 47, 188-195.
[18] Yu, S.; Girotto, S.; Lee, C.; Magliozzo, R. S. Reduced Affinity for Isoniazid in the S315T Mutant of Mycobacterium tuberculosis KatG is a Key Factor in Antibiotic Resistance. J. Biol. Chem. 2003, 278, 14769-14775.
[19] Kapetanaki, S.; Chouchane, S.; Girotto, S.; Yu, S.; Magliozzo, R.S.; Schelvis, J. P. Conformational Differences in Mycobacterium tuberculosis Catalase-Peroxidase KatG and its S315T Mutant Revealed by Resonance Raman Spectroscopy. Biochemistry. 2003, 42, 3835-3845.
[20] Carpena, X.; Loprasert, S.; Mongkolsuk, S.; Switala, J.; Loewen, P.C.; Fita, I. Catalase-Peroxidase KatG of Burkholderia pseudomallei at 1.7A Resolution. J. Mol. Biol. 2003, 327, 475-489.
[21] Ghiladi, R.A.; Cabelli, D.E.; Ortiz de Montellano, P.R. Superoxide Reactivity of KatG: Insights into Isoniazid Resistance Pathways in TB. J Am Chem Soc. 2004, 126, 4772-4773.
[22] Rouse, D.A.; De Vito, J.A.; Li, Z.; Byer, H.; Morris, S.L. Site-Directed Mutagenesis of the katG gene of Mycobacterium tuberculosis: Effects on Catalase-Peroxidase Activities and Isoniazid Resistance. Mol. Microbiol. 1996, 22, 583-592.
[23] Chouchane, S.; Girotto, S.; Yu,S.; Magliozzo, R.S.; Identification and Characterization of Tyrosyl Radical Formation in Mycobacterium tuberculosis Catalase-Peroxidase (KatG). J Biol Chem. 2002, 277, 42633-426338.
[24] Wei, C.J.; Lei, B.; Musser, J.M.; Tu, S.C. Isoniazid Activation Defects in Recombinant Mycobacterium tuberculosis Catalase-Peroxidase (KatG) Mutants Evident in InhA Inhibitor Production. Antimicrob. Agents. Chemother. 2003, 47, 670- 675.
[25] Yu, S.; Chouchane, S.; Magliozzo, R.S. Characterization of the W321F Mutant of Mycobacterium tuberculosis Catalase-Peroxidase KatG. Protein. Sci. 2002, 11, 58-64.
[26] Bertrand, T.; Eady, N.A; Jones, J.N.; Jesmin, Nagy, J.M.; Jamart-Gregoire B, et al. Crystal Structure of Mycobacterium tuberculosis Catalase-Peroxidase. J. Biol. Chem. 2004, 279, 38991-38999.
[27] Pierattelli, R.; Banci, L.; Eady, N. A.; Bodiguel, J.; Jones, J.N.; Moody, P.C.; et al. Enzyme-Catalyzed Mechanism of Isoniazid Activation in Class I and Class III Peroxidases. J. Biol. Chem. 2004, 279, 39000-39009.
[28] Metcalfe, C.; Macdonald, I.K.; Murphy, E.J.; Brown, K.A.; Raven, E. L.; Moody, P.C. The Tuberculosis Prodrug Isoniazid Bound to Activating Peroxidases. J. Biol.Chem. 2008, 283, 6193-6200.
[29] Purohit, R.; Rajendran, V.; Sethumadhavan, R. Relationship between Mutation of Serine Residue at 315th Position in M. tuberculosis Catalase-Peroxidase Enzyme and Isoniazid Susceptibility: An in silico Analysis. J Mol Model. 2011, 17, 869–877.
[30] Ramasubban, G.; Therese KL.; Vetrivel, U.; Sivashanmugam, M.; Rajan, P.; Sridhar, R.; Madhavan, H.N.; Meenakshi N.. Detection of Novel Coupled Mutations in the katG Gene (His276Met, Gln295His and Ser315Thr) in a Multidrug-Resistant Mycobacterium tuberculosis Strain from Chennai, India, and Insight into the Molecular Mechanism of Isoniazid Resistance Using Structural Bioinformatics Approaches. Int. J Antimicrob. Agents. 2011, 37368–37372.
[31] Eswar, N.; Marti-Renom M. A; Webb, B; Madhusudhan M. S.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling with MODELLER. Current Protocols in Bioinformatics, John Wiley and Sons, Inc., Supplement 15, 2006, 5.6.1-5.6.30.
[32] Jones, G.; Willett, P.; Glen, R.C. Molecular Recognition of Receptor Sites Using a Genetic Algorithm with a Description of Desolvation. J. Mol. Biol. 1995, 245, 43-53.
[33] Nusrath Unissa, A.; Selvakumar, N.; Narayanan, S.; Narayanan, P.R. Molecular Analysis of Isoniazid-Resistant Clinical Isolates of Mycobacterium tuberculosis from India. Int. J Antimicrob. Agents. 2008, 31, 71–75.
[34] Nusrath Unissa, A.; Narayanan, S.; Suganthi, C.; Selvakumar, N. Detection of Isoniazid-Resistant Clinical Isolates of Mycobacterium tuberculosis from India Using Ser315Thr Marker by Comparison of Molecular Methods. Int. J Clin. and Med Microbiol 2011, 1, 52-59.
[35] Nusrath Unissa, A.; Narayanan, S.; Selvakumar, N. Virulence in Isoniazid-Resistant Clinical Mutants of Mycobacterium tuberculosis from South India. Int J Clin Med Micro, 2011, 1, 87-96.
[36] Nusrath Unissa, A.; Selvakumar N.; Sujatha Narayanan. Characterization of Isoniazid-Resistant Mutant (S315R) Catalase-Peroxidase, KatG, from Mycobacterium tuberculosis. Int J Med Sci Technol. 2011, 4, 13-22.
[37] Nusrath Unissa, A.; Sameer Hasan.; Selvakumar, N. Elucidating Isoniazid Resistance in Mycobacterium tuberculosis Using Molecular Docking Approach. nt JPharma Biosci 2012, 3, 314-326.
[38] Zhao, X.; Yu, H.; Yu, S.; Wang, F.; Sacchettini, J.C, Magliozzo, R.S. Hydrogen Peroxide-Mediated Isoniazid Activation Catalyzed by Mycobacterium tuberculosis Catalase-Peroxidase (KatG) and its S315T Mutant. Biochemistry. 2006, 45, 4131-4140.