Search results for: Rock Fracture Mechanics
373 Railway Crane Accident: A Comparative Metallographic Test on Pins Fractured during Operation
Authors: Thiago Viana
Abstract:
Eventually train accidents occur on railways and for some specific cases it is necessary to use a train rescue with a crane positioned under a platform wagon. These tumbled machines are collected and sent to the machine shop or scrap yard. In one of these cranes that were being used to rescue a wagon, occurred a fall of hoist due to fracture of two large pins. The two pins were collected and sent for failure analysis. This work investigates the main cause and the secondary causes for the initiation of the fatigue crack. All standard failure analysis procedures were applied, with careful evaluation of the characteristics of the material, fractured surfaces and, mainly, metallographic tests using an optical microscope to compare the geometry of the peaks and valleys of the thread of the pins and their respective seats. By metallographic analysis, it was concluded that the fatigue cracks were started from a notch (stress concentration) in the valley of the threads of the pin applied to the right side of the crane (pin 1). In this, it was verified that the peaks of the threads of the pin seat did not have proper geometry, with sharp edges being present that caused such notches. The visual analysis showed that fracture of the pin on the left side of the crane (pin 2) was brittle type, being a consequence of the fracture of the first one. Recommendations for this and other railway cranes have been made, such as nondestructive testing, stress calculation, design review, quality control and suitability of the mechanical forming process of the seat threads and pin threads.
Keywords: Crane, fracture, pin, railway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513372 Probe of Crack Initiate at the Toe of Concrete Gravity Dam using Numerical Analysis
Authors: M. S. Salimi, H. Kiamanesh, N. Hedayat
Abstract:
In this survey the process of crack propagation at the toe of concrete gravity dam is investigated by applying principals and criteria of linear elastic fracture mechanic. Simulating process of earthquake conditions for three models of dam with different geometrical condition, in empty reservoir under plain stress is calculated through special fracture mechanic software FRANNC2D [1] for determining fracture mechanic criteria. The outcomes showed that in spite of the primary expectations, the simultaneous existence of fillet in both toe and heel area (model 3), the rate of maximum principal stress has not been decreased; however, even the maximum principal stress has increased, so it caused stress intensity factors increase which is undesirable. On the other hand, the dam with heel fillet has shown the best attitude and it is because of items like decreasing the rates of maximum and minimum principal stresses and also is related to decreasing the rates of stress intensity factors for 1st & 2nd modes of the model.Keywords: Stress intensity factor, concrete gravity dam, numerical analysis, geometry of toe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740371 Identification of High Stress and Strain Regions in Proximal Femur during Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model
Authors: H. Kheirollahi, Y. Luo
Abstract:
Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subject’s quantitative computed tomography (QCT) image and used it to identify potentially high stress and strain regions during the single-leg stance and the sideways fall. It was found that fracture may initiate from the superior region of femoral neck and propagate to the inferior region during a high impact force such as sideways fall. The results of this study showed that the femur bone is more sensitive to strain than stress which indicates the effect of strain, in addition to effect of stress, should be considered for failure analysis.Keywords: Finite element analysis, hip fracture, strain, stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509370 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels
Authors: O. Chaudhari, A. N. Ghafar, G. Zirgulis, M. Mousavi, T. Ellison, S. Pousette, P. Fontana
Abstract:
In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.
Keywords: corrosion, durability, mortar, rock bolt
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421369 A Study of Shear Stress Intensity Factor of PP and HDPE by a Modified Experimental Method together with FEM
Authors: Md. Shafiqul Islam, Abdullah Khan, Sharon Kao-Walter, Li Jian
Abstract:
Shear testing is one of the most complex testing areas where available methods and specimen geometries are different from each other. Therefore, a modified shear test specimen (MSTS) combining the simple uniaxial test with a zone of interest (ZOI) is tested which gives almost the pure shear. In this study, material parameters of polypropylene (PP) and high density polyethylene (HDPE) are first measured by tensile tests with a dogbone shaped specimen. These parameters are then used as an input for the finite element analysis. Secondly, a specially designed specimen (MSTS) is used to perform the shear stress tests in a tensile testing machine to get the results in terms of forces and extension, crack initiation etc. Scanning Electron Microscopy (SEM) is also performed on the shear fracture surface to find material behavior. These experiments are then simulated by finite element method and compared with the experimental results in order to confirm the simulation model. Shear stress state is inspected to find the usability of the proposed shear specimen. Finally, a geometry correction factor can be established for these two materials in this specific loading and geometry with notch using Linear Elastic Fracture Mechanics (LEFM). By these results, strain energy of shear failure and stress intensity factor (SIF) of shear of these two polymers are discussed in the special application of the screw cap opening of the medical or food packages with a temper evidence safety solution.
Keywords: Shear test specimen, Stress intensity factor, Finite Element simulation, Scanning electron microscopy, Screw cap opening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924368 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.
Keywords: Water inflow, Tunnel, Discontinues rock, Numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510367 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage
Authors: Jehnming Lin
Abstract:
The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constrains. Therefore the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.
Keywords: Laser cleavage, controlled fracture, contact ball lens.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479366 Considerations for Effectively Using Probability of Failure as a Means of Slope Design Appraisal for Homogeneous and Heterogeneous Rock Masses
Authors: Neil Bar, Andrew Heweston
Abstract:
Probability of failure (PF) often appears alongside factor of safety (FS) in design acceptance criteria for rock slope, underground excavation and open pit mine designs. However, the design acceptance criteria generally provide no guidance relating to how PF should be calculated for homogeneous and heterogeneous rock masses, or what qualifies a ‘reasonable’ PF assessment for a given slope design. Observational and kinematic methods were widely used in the 1990s until advances in computing permitted the routine use of numerical modelling. In the 2000s and early 2010s, PF in numerical models was generally calculated using the point estimate method. More recently, some limit equilibrium analysis software offer statistical parameter inputs along with Monte-Carlo or Latin-Hypercube sampling methods to automatically calculate PF. Factors including rock type and density, weathering and alteration, intact rock strength, rock mass quality and shear strength, the location and orientation of geologic structure, shear strength of geologic structure and groundwater pore pressure influence the stability of rock slopes. Significant engineering and geological judgment, interpretation and data interpolation is usually applied in determining these factors and amalgamating them into a geotechnical model which can then be analysed. Most factors are estimated ‘approximately’ or with allowances for some variability rather than ‘exactly’. When it comes to numerical modelling, some of these factors are then treated deterministically (i.e. as exact values), while others have probabilistic inputs based on the user’s discretion and understanding of the problem being analysed. This paper discusses the importance of understanding the key aspects of slope design for homogeneous and heterogeneous rock masses and how they can be translated into reasonable PF assessments where the data permits. A case study from a large open pit gold mine in a complex geological setting in Western Australia is presented to illustrate how PF can be calculated using different methods and obtain markedly different results. Ultimately sound engineering judgement and logic is often required to decipher the true meaning and significance (if any) of some PF results.
Keywords: Probability of failure, point estimate method, Monte-Carlo simulations, sensitivity analysis, slope stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199365 Obtain the Stress Intensity Factor (SIF) in a Medium Containing a Penny-Shaped Crack by the Ritz Method
Authors: A. Tavangari, N. Salehzadeh
Abstract:
In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, the mode I stress intensity factor (SIF) of three-dimensional penny- Shaped crack is obtained in an isotropic elastic cylindrical medium with arbitrary dimensions under arbitrary loading at the top of the cylinder, by the semi-analytical method based on the Rayleigh-Ritz method. This method that is based on minimizing the potential energy amount of the whole of the system, gives a very close results to the previous studies. Defining the displacements (elastic fields) by hypothetical functions in a defined coordinate system is the base of this research. So for creating the singularity conditions at the tip of the crack the appropriate terms should be found.
Keywords: Penny-shaped crack, Stress intensity factor, Fracture mechanics, Ritz method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116364 Simulation and Analysis of Polyetheretherketone Implants for Diaphysis Femur Fracture
Authors: Abhishek Soni, Bhagat Singh
Abstract:
In the present work, reverse engineering approach has been used to create a 3D model of a fractured femur diaphysis bone using the computed tomography (CT) scan data. Thereafter, a counter fit fixation plate of polyetheretherketone (PEEK) composite has been designed and analyzed considering static physiological loading conditions. Static stress distribution and deformation analysis of the plate have been performed. From the analysis, it has been found that the stresses and deformation developed are quite low. This implies that these designed fixation plates will be able to provide stable fixation and thus resulting in improved fracture union.
Keywords: Customized implant, deformation, femur diaphysis, stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683363 Development of Rock Engineering System-Based Models for Tunneling Progress Analysis and Evaluation: Case Study of Tailrace Tunnel of Azad Power Plant Project
Authors: S. Golmohammadi, M. Noorian Bidgoli
Abstract:
Tunneling progress is a key parameter in the blasting method of tunneling. Taking measures to enhance tunneling advance can limit the progress distance without a supporting system, subsequently reducing or eliminating the risk of damage. This paper focuses on modeling tunneling progress using three main groups of parameters (tunneling geometry, blasting pattern, and rock mass specifications) based on the Rock Engineering Systems (RES) methodology. In the proposed models, four main effective parameters on tunneling progress are considered as inputs (RMR, Q-system, Specific charge of blasting, Area), with progress as the output. Data from 86 blasts conducted at the tailrace tunnel in the Azad Dam, western Iran, were used to evaluate the progress value for each blast. The results indicated that, for the 86 blasts, the progress of the estimated model aligns mostly with the measured progress. This paper presents a method for building the interaction matrix (statistical base) of the RES model. Additionally, a comparison was made between the results of the new RES-based model and a Multi-Linear Regression (MLR) analysis model. In the RES-based model, the effective parameters are RMR (35.62%), Q (28.6%), q (specific charge of blasting) (20.35%), and A (15.42%), respectively, whereas for MLR analysis, the main parameters are RMR, Q (system), q, and A. These findings confirm the superior performance of the RES-based model over the other proposed models.
Keywords: Rock Engineering Systems, tunneling progress, Multi Linear Regression, Specific charge of blasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143362 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys
Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes
Abstract:
This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.
Keywords: Precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185361 Evaluation of the Environmental Risk from the Co-Deposition of Waste Rock Material and Fly Ash
Authors: A. Mavrikos, N. Petsas, E. Kaltsi, D. Kaliampakos
Abstract:
The lignite-fired power plants in the Western Macedonia Lignite Center produce more than 8106 t of fly ash per year. Approximately 90% of this quantity is used for restoration-reclamation of exhausted open-cast lignite mines and slope stabilization of the overburden. The purpose of this work is to evaluate the environmental behavior of the mixture of waste rock and fly ash that is being used in the external deposition site of the South Field lignite mine. For this reason, a borehole was made within the site and 86 samples were taken and subjected to chemical analyses and leaching tests. The results showed very limited leaching of trace elements and heavy metals from this mixture. Moreover, when compared to the limit values set for waste acceptable in inert waste landfills, only few excesses were observed, indicating only minor risk for groundwater pollution. However, due to the complexity of both the leaching process and the contaminant pathway, more boreholes and analyses should be made in nearby locations and a systematic groundwater monitoring program should be implemented both downstream and within the external deposition site.
Keywords: Co-deposition, fly ash, leaching tests, lignite, waste rock.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893360 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines
Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz
Abstract:
Steel tubular towers serving as support structures for large wind turbines are subjected to several hundred million stress cycles caused by the turbulent nature of the wind. This causes highcycle fatigue, which could govern the design of the tower. Maintaining the support structure after the wind turbines reach its typical 20-year design life has become a common practice; however, quantifying the changes in the reliability on the tower is not usual. In this paper the effect of fatigue damage in the wind turbine structure is studied whit the use of fracture mechanics, and a method to estimate the reliability over time of the structure is proposed. A representative wind turbine located in Oaxaca, Mexico is then studied. It is found that the system reliability is significantly affected by the accumulation of fatigue damage.
Keywords: Crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327359 Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa
Authors: Modreck Gomo
Abstract:
The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO3 hydrochemical facie while fractured-rock aquifer has a Ca-HCO3 facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca2+ in the Ca-HCO3 hydrochemical type to result in the Na-HCO3 hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted.
Keywords: Alluvial aquifer, fractured-rock aquifer, groundwater quality, hydrogeochemical processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961358 Factors Affecting the Ultimate Compressive Strength of the Quaternary Calcarenites, North Western Desert, Egypt
Authors: M. A. Rashed, A. S. Mansour, H. Faris, W. Afify
Abstract:
The calcarenites carbonate rocks of the Quaternary ridges, which extend along the northwestern Mediterranean coastal plain of Egypt, represent an excellent model for the transformation of loose sediments to real sedimentary rocks by the different stages of meteoric diagenesis. The depositional and diagenetic fabrics of the rocks, in addition to the strata orientation, highly affect their ultimate compressive strength and other geotechnical properties.
There is a marked increase in the compressive strength (UCS) from the first to the fourth ridge rock samples. The lowest values are related to the loose packing, weakly cemented aragonitic ooid sediments with high porosity, besides the irregularly distributed of cement, which result in decreasing the ability of these rocks to withstand crushing under direct pressure. The high (UCS) values are attributed to the low porosity, the presence of micritic cement, the reduction in grain size and the occurrence of micritization and calcretization processes.
The strata orientation has a notable effect on the measured (UCS). The lowest values have been recorded for the samples cored in the inclined direction; whereas the highest values have been noticed in most samples cored in the vertical and parallel directions to bedding plane. In case of the inclined direction, the bedding planes were oriented close to the plane of maximum shear stress. The lowest and highest anisotropy values have been recorded for the first and the third ridges rock samples, respectively, which may attributed to the relatively homogeneity and well sorted grainstone of the first ridge rock samples, and relatively heterogeneity in grain and pore size distribution and degree of cementation of the third ridge rock samples, besides, the abundance of shell fragments with intraparticle pore spaces, which may produce lines of weakness within the rock.
Keywords: Compressive strength, Anisotropy, Calcarenites, Egypt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4131357 The Applications of Quantum Mechanics Simulation for Solvent Selection in Chemicals Separation
Authors: Attapong T., Hong-Ming Ku, Nakarin M., Narin L., Alisa L, Jirut W.
Abstract:
The quantum mechanics simulation was applied for calculating the interaction force between 2 molecules based on atomic level. For the simple extractive distillation system, it is ternary components consisting of 2 closed boiling point components (A,lower boiling point and B, higher boiling point) and solvent (S). The quantum mechanics simulation was used to calculate the intermolecular force (interaction force) between the closed boiling point components and solvents consisting of intermolecular between A-S and B-S. The requirement of the promising solvent for extractive distillation is that solvent (S) has to form stronger intermolecular force with only one component than the other component (A or B). In this study, the systems of aromatic-aromatic, aromatic-cycloparaffin, and paraffindiolefin systems were selected as the demonstration for solvent selection. This study defined new term using for screening the solvents called relative interaction force which is calculated from the quantum mechanics simulation. The results showed that relative interaction force gave the good agreement with the literature data (relative volatilities from the experiment). The reasons are discussed. Finally, this study suggests that quantum mechanics results can improve the relative volatility estimation for screening the solvents leading to reduce time and money consumingKeywords: Extractive distillation, Interaction force, Quamtum mechanic, Relative volatility, Solvent extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593356 Driver of Tectonic Plate Fracture and Movement
Authors: Xuguang Leng
Abstract:
The theory of tectonic plate asteroid driver provides that comet and asteroid collisions have ample energy to fracture, move, and deform tectonic plate. The enormous kinetic energy of an asteroid collision is dissipated through the fracture and violent movement of the tectonic plates, and stored in the plate deformations. The stored energy will be released in the future through plate slow movement. The reflection of plate edge upwards upon collision impact causes the plate to sit on top of adjacent plate and creates the subduction plate. Higher probability and higher energy of asteroid collision in the equator area provides the net energy to drive heavier land plates to higher latitudes, offsetting the tidal and self spin forces, creating a more random land plates distribution. The trend of asteroid collisions is less frequency and intensity as loose objects are merging into the planets and Jupiter is taking ever larger shares of collisions. As overall energy input from asteroid collision decreases, plate movement is slowing down and eventually land plates will congregate towards equator area. The current trajectory of plate movements is the cumulative effect of past asteroid collisions, and can be altered, new plates be created, by future collisions.
Keywords: Tectonic plate, Earth, asteroid, comet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218355 Maximizer of the Posterior Marginal Estimate of Phase Unwrapping Based On Statistical Mechanics of the Q-Ising Model
Authors: Yohei Saika, Tatsuya Uezu
Abstract:
We constructed a method of phase unwrapping for a typical wave-front by utilizing the maximizer of the posterior marginal (MPM) estimate corresponding to equilibrium statistical mechanics of the three-state Ising model on a square lattice on the basis of an analogy between statistical mechanics and Bayesian inference. We investigated the static properties of an MPM estimate from a phase diagram using Monte Carlo simulation for a typical wave-front with synthetic aperture radar (SAR) interferometry. The simulations clarified that the surface-consistency conditions were useful for extending the phase where the MPM estimate was successful in phase unwrapping with a high degree of accuracy and that introducing prior information into the MPM estimate also made it possible to extend the phase under the constraint of the surface-consistency conditions with a high degree of accuracy. We also found that the MPM estimate could be used to reconstruct the original wave-fronts more smoothly, if we appropriately tuned hyper-parameters corresponding to temperature to utilize fluctuations around the MAP solution. Also, from the viewpoint of statistical mechanics of the Q-Ising model, we found that the MPM estimate was regarded as a method for searching the ground state by utilizing thermal fluctuations under the constraint of the surface-consistency condition.
Keywords: Bayesian inference, maximizer of the posterior marginal estimate, phase unwrapping, Monte Carlo simulation, statistical mechanics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715354 Analysis of Liquid Nitrogen Spray Atomization Characteristics by Internal-Mixing Atomizers
Authors: Zhang Lei, Liu Gaotong
Abstract:
The atomization effect is an important factor of the heat transfer of liquid nitrogen spray. In this paper, two kinds of internal-mixing twin-fluid atomizers were design. According to the fracture theory and fluid mechanics, the model is established to simulate atomization effect. The results showed that: Internal-mixing atomizers, with the liquid nitrogen atomization size from 20um to 40um, have superior performance. Y-jet atomizer spray speed is greater than Multi-jet atomizer, and it can improve the efficiency of heat transfer between the liquid nitrogen and its spray object. Multi-jet atomizer atomization cone angle is about 30°, Y-jet atomizer atomization cone angle is about 20°. During atomizer selection, the size of the heat transfer area should be considered.
Keywords: Atomization, two-phase flow, atomizer, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823353 Process Analysis through Length Consistency
Authors: James E. Ponder
Abstract:
The requirement for consistency in physics can sometimes offer a common ground between disciplines such that their fundamental equations share a common parameter set and mathematical method for equation extraction. The parameter set shared by Relativity and Quantum Wave Mechanics enables an analysis which will be seen to be very straightforward, primarily classical in nature using linear algebra concepts, yet deriving a theoretical estimate of the value of the Gravitational Constant along with dependencies never before known.
Keywords: Gravitational Constant, Physical Consistency, Quantum Mechanics, Relativity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539352 The Fracture Resistance of Zirconia Based Dental Crowns from Cyclic Loading: A Function of Relative Wear Depth
Authors: T. Qasim, B. El Masoud, D. Ailabouni
Abstract:
This in vitro study focused on investigating the fatigue resistance of veneered zirconia molar crowns with different veneering ceramic thicknesses, simulating the relative wear depths under simulated cyclic loading. A mandibular first molar was prepared and then scanned using computer-aided design/computer-aided manufacturing (CAD/CAM) technology to fabricate 32 zirconia copings of uniform 0.5 mm thickness. The manufactured copings then veneered with 1.5 mm, 1.0 mm, 0.5 mm, and 0.0 mm representing 0%, 33%, 66%, and 100% relative wear of a normal ceramic thickness of 1.5 mm. All samples were thermally aged to 6000 thermo-cycles for 2 minutes with distilled water between 5 ˚C and 55 ˚C. The samples subjected to cyclic fatigue and fracture testing using SD Mechatronik chewing simulator. These samples are loaded up to 1.25x10⁶ cycles or until they fail. During fatigue, testing, extensive cracks were observed in samples with 0.5 mm veneering layer thickness. Veneering layer thickness 1.5-mm group and 1.0-mm group were not different in terms of resisting loads necessary to cause an initial crack or final failure. All ceramic zirconia-based crown restorations with varying occlusal veneering layer thicknesses appeared to be fatigue resistant. Fracture load measurement for all tested groups before and after fatigue loading exceeded the clinical chewing forces in the posterior region. In general, the fracture loads increased after fatigue loading and with the increase in the thickness of the occlusal layering ceramic.
Keywords: All ceramic, dental crowns, relative wear, chewing simulator, cyclic loading, thermally ageing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910351 Identification of Ductile Damage Parameters for Austenitic Steel
Authors: J. Dzugan, M. Spaniel, P. Konopík, J. Ruzicka, J. Kuzelka
Abstract:
The modeling of inelastic behavior of plastic materials requires measurements providing information on material response to different multiaxial loading conditions. Different triaxiality conditions and values of Lode parameters have to be covered for complex description of the material plastic behavior. Samples geometries providing material plastic behavoiur over the range of interest are proposed with the use of FEM analysis. Round samples with 3 different notches and smooth surface are used together with butterfly type of samples tested at angle ranging for 0 to 90°. Identification of ductile damage parameters is carried out on the basis of obtained experimental data for austenitic stainless steel. The obtained material plastic damage parameters are subsequently applied to FEM simulation of notched CT normally samples used for fracture mechanics testing and results from the simulation are compared with real tests.Keywords: baqus, austenitic steel, computer simulation, ductile damage, triaxiality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3737350 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading
Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho
Abstract:
Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.
Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529349 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface
Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi
Abstract:
By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard.
Keywords: Bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589348 Newtonian Mechanics Descriptions for General Relativity Experimental Tests, Dark Matter and Dark Energy
Authors: Jing-Gang Xie
Abstract:
As the continuation to the previous studies of gravitational frequency shift, gravitational time dilation, gravitational light bending, gravitational waves, dark matter, and dark energy are explained in the context of Newtonian mechanics. The photon is treated as the particle with mass of hν/C2 under the gravitational field of much larger mass of M. Hence the quantum mechanics theory could be applied to gravitational field on cosmology scale. The obtained results are the same as those obtained by general relativity considering weak gravitational field approximation; however, the results are different when the gravitational field is substantially strong.
Keywords: Gravitational time dilation, gravitational light bending, gravitational waves, dark matter, dark energy, General Relativity, gravitational frequency shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050347 Creep Transition in a Thin Rotating Disc Having Variable Density with Inclusion
Authors: Pankaj, Sonia R. Bansal
Abstract:
Creep stresses and strain rates have been obtained for a thin rotating disc having variable density with inclusion by using Seth-s transition theory. The density of the disc is assumed to vary radially, i.e. ( ) 0 ¤ü ¤ü r/b m - = ; ¤ü 0 and m being real positive constants. It has been observed that a disc, whose density increases radially, rotates at higher angular speed, thus decreasing the possibility of a fracture at the bore, whereas for a disc whose density decreases radially, the possibility of a fracture at the bore increases.Keywords: Elastic-Plastic, Inclusion, Rotating disc, Stress, Strain rates, Transition, variable density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739346 Hydrochemical Assessment and Quality Classification of Water in Torogh and Kardeh Dam Reservoirs, North-East Iran
Authors: Mojtaba Heydarizad
Abstract:
Khorasan Razavi is the second most important province in north-east of Iran, which faces a water shortage crisis due to recent droughts and huge water consummation. Kardeh and Torogh dam reservoirs in this province provide a notable part of Mashhad metropolitan (with more than 4.5 million inhabitants) potable water needs. Hydrochemical analyses on these dam reservoirs samples demonstrate that MgHCO3 in Kardeh and CaHCO3 and to lower extent MgHCO3 water types in Torogh dam reservoir are dominant. On the other hand, Gibbs binary diagram demonstrates that rock weathering is the main factor controlling water quality in dam reservoirs. Plotting dam reservoir samples on Mg2+/Na+ and HCO3-/Na+ vs. Ca2+/ Na+ diagrams demonstrate evaporative and carbonate mineral dissolution is the dominant rock weathering ion sources in these dam reservoirs. Cluster Analyses (CA) also demonstrate intense role of rock weathering mainly (carbonate and evaporative minerals dissolution) in water quality of these dam reservoirs. Studying water quality by the U.S. National Sanitation Foundation (NSF) WQI index NSF-WQI, Oregon Water Quality Index (OWQI) and Canadian Water Quality Index DWQI index show moderate and good quality.Keywords: Hydrochemistry, water quality classification, water quality indexes, Torogh and Kardeh Dam Reservoirs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146345 A Study on the Pressure Void Ratio Relationship for Rock Powder Blends with Brick Dust
Authors: Aktan Ozsoy, Ali Fırat Cabalar, Eyyub Karakan
Abstract:
Climate change is one of the biggest issues facing communities. Increasing population, growing economies, rapid industrialization are the main factors triggering it. On the other hand, the millions of tons of waste have generated by the period of rapid global growth not only harm to the environment but also lead to the use of valuable lands around the world as landfill sites. Moreover, it is rapidly consuming our resources and this forces the human population and wildlife to share increasingly shrinking space. In this direction, it is vital to reuse waste materials with a sustainability philosophy. This study was carried out to contribute to the combat against climate change, conserve our natural resources and the environment. An oedometer (consolidation) test was performed on two waste materials combined in certain proportions to evaluate their sustainable usage. Crushed brick dust (BD) was mixed with rock powder (RP) in 0%, 5%, 10%, 20%, 30%, 40%, and 50% (dry weight of soil). The results obtained revealed the importance of the gradation of the material used in the consolidation test. It was found that there was a negligible difference between the initial and final void ratio of mixtures with BD added.
Keywords: Waste material, oedometer test, environmental geotechnics, sustainability, crushed brick dust, rock powder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282344 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.
Keywords: Thermomechanical fatigue, failure, numerical simulation, fracture, damages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495