
 

 

 
Abstract—Tunneling progress is a key parameter in the blasting 

method of tunneling. Taking measures to enhance tunneling advance 
can limit the progress distance without a supporting system, 
subsequently reducing or eliminating the risk of damage. This paper 
focuses on modeling tunneling progress using three main groups of 
parameters (tunneling geometry, blasting pattern, and rock mass 
specifications) based on the Rock Engineering Systems (RES) 
methodology. In the proposed models, four main effective parameters 
on tunneling progress are considered as inputs (RMR, Q-system, 
Specific charge of blasting, Area), with progress as the output. Data 
from 86 blasts conducted at the tailrace tunnel in the Azad Dam, 
western Iran, were used to evaluate the progress value for each blast. 
The results indicated that, for the 86 blasts, the progress of the 
estimated model aligns mostly with the measured progress. This paper 
presents a method for building the interaction matrix (statistical base) 
of the RES model. Additionally, a comparison was made between the 
results of the new RES-based model and a Multi-Linear Regression 
(MLR) analysis model. In the RES-based model, the effective 
parameters are RMR (35.62%), Q (28.6%), q (specific charge of 
blasting) (20.35%), and A (15.42%), respectively, whereas for MLR 
analysis, the main parameters are RMR, Q (system), q, and A. These 
findings confirm the superior performance of the RES-based model 
over the other proposed models. 

 
Keywords—Rock Engineering Systems, tunneling progress, Multi 

Linear Regression, Specific charge of blasting. 

I. INTRODUCTION 

HE estimation of tunneling progress values in rock is a 
complex and crucial task frequently encountered during 

tunnel excavation [1]. Developing prediction models has been 
a primary objective and has been in progress for many years 
[1]-[3]. In addition to theoretical and empirical models, 
Artificial Neural Networks (ANN) have been employed to 
predict the rate of penetration and tunneling progress values [4]-
[6]. Fuzzy logic, genetic algorithms, and ANNs have also been 
utilized to establish predictive models and assign principal 
parameters in hydrology, mining, and civil engineering 
applications in recent years [4], [5], [7]-[9]. Most of these 
models are generated based on experience gained and data 
compiled from past tunneling projects.  

The aim of this study is to evaluate the effect of main 
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parameters on tunneling progress values using a method called 
Rock Engineering System (RES). 

II. ROCK ENGINEERING SYSTEM 

One of the best strong methods to solving complex 
engineering problems is RES, which was first introduced by 
Hudson [10]-[12]. RES method has been widely applied to 
several engineering problems including environmental studies; 
regarding the disposal of spent fuel [13], forest ecosystems [14], 
[15], radioactive waste management [16], [17], traffic-induced 
air pollution [18], risk of reservoir pollution [19], tunnel boring 
machine [20], [21] etc. It has also been widely used in most rock 
mechanics applications such as slope stability [22]-[30], 
stability analysis of tunnels and underground spaces [20]-[31]-
[32] and blasting analysis in rocks [33]-[37].  

In RES application to rock engineering, the interaction 
matrix [10], [12] is the basic analytical tool and a presentational 
method for characterizing the main parameters and the 
interaction mechanisms in a RES. In the interaction matrix for 
a given RES, all parameters influencing the system are arranged 
along the leading diagonal of the matrix, called the diagonal 
terms. The effect of each individual parameter on any other 
parameters is accounted for at the corresponding off-diagonal 
position, named the off-diagonal terms. The off-diagonal terms 
are assigned numerical values which explain the influence 
degree of one parameter on the other parameters. Assignment 
of these values is called coding the matrix. Different coding 
methods have been expanded for this purpose. The common 
coding method is called “expert semi-quantitative” (ESQ). ESQ 
coding has been used in nearly all previous studies cited above. 
In this approach, every interaction is assigned a distinct code, 
effectively symbolizing the impact of a parameter on another 
within the matrix. Ordinarily, the coding values range from 0 to 
4, where 0 signifies no interaction and 4 denotes the maximum 
level of interaction [21]. The general concept of the influences 
in a system is defined by the interaction matrix, which is shown 
in Fig. 1 [10], [12]. In this matrix, rock mechanics values are 
the primary parameters instead of numbers. Here, the influence 
of ‘A’ on ‘B’ is not the same as the influence of B on A, which 
means the matrix is asymmetric [38]. Thus, it is important to 
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put the parameter interactions in clockwise direction in the 
matrix. In the interaction matrix, the sum of arrow is called the 
‘‘cause’’ value (Cpi = Σnj = 1Iij) and the sum of a column is the 
‘‘effect’’ value (Epj = Σni = 1Iij). Represented as coordinates 
(C, E) corresponding to a specific parameter, these values can 
be plotted in a cause-and-effect space, creating what is known 
as a C–E plot. The interactive intensity of each parameter is 
expressed as the sum of its C and E values (C+E), serving as an 
indicator of the parameter's significance within the system [40]. 
The percentage value of (C+E) can be used as the parameter’s 
weighting factor (αi) as follows: 
 

( )
100i i

i

i i
i i

C E

C E

 
 
  
 
 

           (1) 

 

 

Fig. 1 General illustration of interaction matrix with two factors [10] 
 

In order to use RES model in this project, a database 
comprising rock mass rating (RMR), Q (system) of rock mass, 
tunneling geometry specifications (Area), and blasting 
specification (specific charge) data has been established by 
collecting field data from completed tunnels in the Azad Dam, 

Iran. Subsequently, utilizing the established dataset, both the 
MLR and RES models are developed to assess the tunneling 
progress value under these geological conditions. 

III. CASE STUDY 

The Azad Pumped Storage Power Plant (PSPP) is situated in 
the western part of Iran at coordinates 35.21 N and 46.34 E 
along the Kumasi River. This project is designed to harness 
hydraulic potentiality by utilizing a pumping system during the 
low load conditions of the power supply network. 
Subsequently, it generates electricity through turbines and 
generators during peak load conditions of the network. The 
Azad PSPP consists of two reservoirs and a power plant. The 
lower reservoir is the Azad Dam reservoir, while the upper 
reservoir is created through excavation at an elevation of 1,900 
m [39]. The Azad power plant site is positioned in the 
Sanandaj–Sirjan formation, characterized by the alternation of 
sandstone, schist, phylite, and conglomerate [41]. 

To investigate the geological and hydrological conditions of 
the reservoir, six exploratory boreholes were drilled to various 
depths, and permeability tests were conducted in each of them. 
The tailrace tunnel, known as Payab, in the Azad Dam was 
specifically studied in the field to establish a database for 
developing the RES model to evaluate the main parameters 
affecting tunneling progress as shown in Fig. 2. The tailrace 
tunnel, constructed in 2017, spanned approximately 660 meters 
in length with a 40 square meter area. To facilitate excavation, 
drilling and blasting methods were employed. The rock strength 
in the mentioned sites ranged between 90 and 120 MPa, drilling 
and blasting are necessary for construction purposes. During the 
drilling process, blast holes with a diameter of 51 mm and a 
depth of 3.5 meters were employed. In the blasting process, 
dynamite was used as the primary explosive. Additionally, the 
blast holes were stemmed with fine gravels. 

 

 

Fig. 2 Schematic layout of Azad PSPP structures 
 

In this research, four main parameters were chosen for 
analysis, as RMR and Q encompass crucial effective parameters 
that can distinctly describe rock mass properties, as illustrated 

in Table I. The significance of these parameters in the modeling 
process was explored by examining the correlations between 
individual independent variables and the measured progress. 
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The coefficient of determination (R2) was employed as an 
indicator of correlation strength. The R2 values for independent 
variables versus Pr (Tunneling progress) are outlined in Table 
II. Consequently, to proceed with further statistical analysis and 
the development of a prediction model, these four independent 
variables were selected. 

 
TABLE I 

THE RANGE OF USED PARAMETERS IN THE PRESENT PAPER FOR PREDICTING 

TUNNELING PROGRESS 

Parameter Unit Min Max 

RMR percentage 32 57 

Tunneling Quality Index (Q)  0.72 3.5 

Blasting specific charge (q) kg/m3 0.5 4 

Tunnel face area (A) m2 36.7 54.53

Tunneling progress (Pr) m 0.35 4.65 

 
TABLE Ⅱ 

RELATIONS BETWEEN INDIVIDUAL INDEPENDENT VARIABLES AND 

TUNNELING PROGRESS (PR) FOR 86 BLASTS, AZAD TAILRACE TUNNEL 

Independent variables Regression 2R RMSE

RMR 
Pr = -0.0054RMR2 + 0.5741RMR - 

11.709 
0.6047 0.4639

Tunneling Quality Index 
(Q) 

Pr = 0.1598Q2 - 1.3139Q + 4.4917 0.3341 0.6021

blasting specific charge 
(q) 

Pr = -0.1853q2 + 0.0064q + 3.7636 0.4129 0.5654

Tunnel face area (A) Pr = 0.0095A2 - 0.859A + 22.127 0.0854 0.7057

Dependent variable (Pr) 

A. Evaluating Tunneling Progress  

In the current paper, MLR and RES methodologies were 
employed to formulate a precise and acceptable equation for 
evaluating tunneling progress resulting from blasting. For the 
development of both MLR and RES models, four influential 
parameters affecting progress, namely RMR, Q, q (specific 
charge), and Area, were adopted as inputs, with progress 
designated as the output parameter. 

B. Prediction of Progress by MLR 

The MLR is one of the most famous methods to fit a linear 
equation between one or more independent parameters and one 
dependent parameter. This method is widely developed to 
predict some problems in the fields of rock mechanic and 
geotechnical engineering. 

Typically, the MLR model can be formulated as follows: 
 

0 1 1     n nY P P X P X                            (2) 

 
where Xi (i = 1, …, n) and Y define independent and dependent 
parameters, respectively. In addition, Pi (i = 0,1, …, n) defines 
regression coefficients. Taking into consideration the 
established datasets, (3) was created by using SPSS v16 
software: 

 

2.84 0.051 0.39 0.48 0.02rP RMR Q q A        (3) 

 
where RMR, Q, q and A represent RMR and Q-value of Barton, 
Specific charge in terms of kg/m3, Area and Pr is tunneling 
progress in terms of meter respectively. As shown in Fig. 3 
measured value and predicted progress value plotted and 
correlation value R2 = 0.736 is acceptable. 

 

 

Fig. 3 The measured Progress versus predicted Progress by MLR 

C. Sensitivity Analysis 

To examine the impact of variations in each parameter on 
tunneling progress, the value of each parameter was 
individually altered, and the effect of each was computed, as 
presented in Tables III-VI. The results indicate that RMR, Q, q, 
and A affect the system in the respective order, as illustrated in 
Fig. 5. In this paper, the MLR equations between parameters 
are linear, and the sensitivity analysis ultimately reveals the 
influential parameters. 

 
TABLE Ⅲ 

VARIABLE PARAMETER: RMR 

Par Min Max RMR10% RMR20% RMR30% RMR40% RMR50% RMR60% RMR70% 

Pt 1 4.65 2.02 2.19 2.36 2.53 2.69 2.86 3.03 

RMR 32 57 36.3 39.6 42.9 46.2 49.5 52.8 56.1 

Q 0.72 3.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

q 0.505 4.007 1.8 1.8 1.8 1.8 1.8 1.8 1.8 

A 36.7 54.53 42.1 42.1 42.1 42.1 42.1 42.1 42.1 

Pt  9.08% 18.16% 27.23% 36.31% 45.39% 54.47% 63.55% 

 

IV. RES BASED MODEL TO EVALUATE TUNNELING PROGRESS 

The principles of RES were incorporated into the 
methodology, as explained in the introduction section. In this 
paper, a similar approach is adopted to formulate a model 
predicting tunneling progress, considering the main parameters 

outlined in Table I. Defining the model involves three primary 
phases. The first step is to identify the parameters responsible 
for potential risks during progress, analyze their behavior, and 
evaluate the significance (weight) each holds in the overall risk 
conditions. 
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A. Interaction Matrix 

Having constructed an interaction matrix, the next step is to 
‘code’ the off-diagonal components in order to show their 
importance or to enable mathematical utilization of the matrix.  
In this paper, a method was used to create interaction matrix, in 
this method relation between each main parameter indicated 
with coefficient of determination R2. Main parameters located 
in main diagonal of matrix and relation between parameters 
located in off-diagonal as coefficient of determinations. The 
benefit of this method is statistical base and not expert 
judgment. 

TABLE Ⅳ 
VARIABLE PARAMETER: Q (Q SYSTEM) 

Par Min Max Q10% Q20% Q30% Q40% 

Pt 1.00 4.65 1.75 1.66 1.56 1.46 

RMR 32.00 57.00 33 33 33 33 

Q 0.72 3.50 2.75 3.00 3.25 3.50 

q 0.505 4.007 1.8 1.8 1.8 1.8 

A 36.70 54.53 42.1 42.1 42.1 42.1 

Pt 5.29% 10.59% 15.88% 21.18% 

 

 
TABLE Ⅴ 

VARIABLE PARAMETER: q (SPECIFIC CHARGE OF BLASTING) 

Par Min Max q10% q20% q30% q40% q50% q60% q70% q80% 

Pt 1.00 4.65 1.766 1.679 1.592 1.504 1.417 1.329 1.242 1.154 

RMR 32.00 57.00 33 33 33 33 33 33 33 33 

Q 0.72 3.50 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 

q 0.505 4.007 1.98 2.16 2.34 2.52 2.7 2.88 3.06 3.24 

A 36.70 54.53 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 

Pt  4.72% 9.44% 14.16% 18.87% 23.59% 28.31% 33.03% 37.75% 

 

 

Fig. 4 Effect of parameters variation on tunneling progress 
 

TABLE Ⅵ 
VARIABLE PARAMETER: A 

Par Min Max A10% A20% A30% 

Pt 1.00 4.650 1.772 1.691 1.609 

RMR 32.00 57.000 33 33 33 

Q 0.72 3.500 2.502 2.502 2.502 

q 0.505 4.007 1.8 1.8 1.8 

A 36.70 54.530 46.31 50.52 54.73 
   4.40% 8.80% 13.20% 

B. Polynomial Regression 

A polynomial regression stands as a method within 
regression analysis where the correlation between the 
independent variable x and the dependent variable y is depicted 
through an nth-degree polynomial. It serves as an expansion of 
linear regression, which solely deals with linear associations 
between variables. 

Within polynomial regression, the x and y relationship finds 
expression through a polynomial equation, capable of capturing 
intricate relationships, encompassing curvature and other non-
linear trends. The polynomial equation's degree determines the 
extent of complexity within the relationship. The most 
straightforward manifestation of polynomial regression is a 
second-degree polynomial, also known as a quadratic equation. 
The relationship between each main parameter is indicated by 
the coefficient of determination (R2) was shown in Table VII. 

In addition to polynomial method of regression, linear 
method and power method were calculated and results were 
compared with each other. Parameters’ effects on progress in 
three methods was shown in Table X. Finally, all of the methods 
illustrate that RMR, Q, q, and A have high effect respectively. 
In this paper polynomial trend line was used to coding the 
interaction matrix because it is real in nature and matrix is not 

World Academy of Science, Engineering and Technology
International Journal of Geotechnical and Geological Engineering

 Vol:18, No:2, 2024 

50International Scholarly and Scientific Research & Innovation 18(2) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 G
eo

te
ch

ni
ca

l a
nd

 G
eo

lo
gi

ca
l E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
2,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
50

0.
pd

f



 

 

symmetric and relations between parameters were evaluated 
carefully. Generally, all of the methods show same trend and 
efficacy and its logical values. 

 
TABLE Ⅶ 

ALL RELATIONS AMONG MAIN PARAMETERS IN POLYNOMIAL MODE 
Dependent 

Par 
Independent 

Par 
Equation R2 

Pt RMR 
Pt = -0.0054RMR2 + 0.5741RMR - 

11.709 
0.6047 

Pt Q Pt = 0.1598Q2 - 1.3139Q + 4.4917 0.3341 

Pt q Pt = -0.1853q2 + 0.0064q + 3.7636 0.4129 

Pt A Pt = 0.0095A2 - 0.859A + 22.127 0.0854 

RMR Pt RMR = -0.6734Pt
2 + 9.5418Pt + 23.622 0.5097 

Q Pt Q = 0.1543pt
2 - 1.2964Pt + 3.7443 0.3757 

q Pt q = 0.0331Pt
2 - 0.7064Pt + 3.6427 0.3832 

A Pt A = 0.9854Pt
2 - 6.0401Pt + 47.611 0.1333 

RMR Q RMR = -3.8022Q2 + 9.3998Q + 41.856 0.2239 

RMR q RMR = -1.0457q2 + 0.4724q + 49.34 0.1597 

RMR A RMR = 0.1004A2 - 8.9657A + 242.71 0.1225 

Q RMR Q = 0.0072RMR2 - 0.6859RMR + 17.386 0.4645 

q RMR q = 0.0018RMR2 - 0.2034RMR + 7.2434 0.1611 

A RMR A = 0.0215RMR2 - 2.0117RMR + 85.095 0.1706 

Q q Q = 0.0377q2 + 0.0252q + 1.1048 0.03926

Q A Q = -0.0101A2 + 0.9445A - 20.131 0.2436 

q Q q = -0.3657Q2 + 1.5191Q + 0.5458 0.09682

A Q A = 1.0222Q2 - 2.0516Q + 39.508 0.1627 

A q A = 0.289q2 - 1.8972q + 41.228 0.04195

q A q = 0.0075A2 - 0.6897A + 17.172 0.08591

 
TABLE Ⅷ 

INTERACTION MATRIX BASE R2 

RMR 0.4645 0.1611 0.1706 0.6047 1.4009 

0.2239 Q 0.09682 0.1627 0.3341 0.81752

0.1597 0.03926 q 0.04195 0.4129 0.65381

0.1225 0.2436 0.08591 A 0.0854 0.53741

0.5097 0.3757 0.3832 0.1333 Pt 1.4009 

1.0158 1.12306 0.72703 0.50855 1.0158  

 
TABLE Ⅸ 

WEIGHTING OF THE PRINCIPAL PARAMETERS IN TUNNELING PROGRESS 

Par C E C+E C-E αi(%)

RMR 1.4009 1.0158 2.4167 0.3851 35.62

Q 0.81752 1.12306 1.94058 -0.30554 28.60

q 0.65381 0.72703 1.38084 -0.07322 20.35

A 0.53741 0.50855 1.04596 0.02886 15.42

sum 3.40964 3.37444 6.78408 0.0352 100
 

 

Fig. 5 Cause and effect diagram 

 

Fig. 6 C+E Value versus main parameters 
 

TABLE Ⅹ 
PARAMETERS EFFECTS ON PROGRESS IN THREE METHODS 

No Par αi(%) Polynomial αi(%) Liner αi(%) Power

1 RMR 35.62 35.97 38.22 

2 Q 28.60 28.32 29.06 

3 q 20.35 26.01 20.76 

4 A 15.42 9.70 11.97 

sum 100.00 100.00 100.00 

V. CONCLUSION 

In this paper, the main effective parameters on tunneling 
progress were investigated using two main methods, MLR and 
RES, and it was demonstrated that both methods yield similar 
results. Notably, a method for coding the interaction matrix was 
presented. In this approach, the interaction matrix was coded 
based on the R-square value and validated through analytical 
approaches. The R-square interaction matrix was constructed 
using three regression methods (polynomial, linear, and power), 
and the results were compared. The comparison revealed 
consistent significance and importance of parameters across the 
different regression methods. One notable advantage of this 
method is that it eliminates the need for expert values of 
parameters in the interaction matrix. Additionally, in the 
polynomial regression method, the interaction matrix is not 
symmetric, making it more realistic than conventional methods. 
Finally, the method was applied in a case study involving the 
Azad Tailrace Tunnel. The results showcased the significance 
values of parameters, highlighting that RMR holds high 
significance and indicating a decrease in the significance of Q 
(system), q (specific charge), and A (Area), respectively. 
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