Search results for: Lattice Boltzmann Method
8081 Highly Accurate Target Motion Compensation Using Entropy Function Minimization
Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani
Abstract:
One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.
Keywords: ATR, HRRP, motion compensation, SFW, TMP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6578080 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution
Authors: A. Amar
Abstract:
A new model namely, the crystal model, has been modified to calculate radius and density distribution of light nuclei up to 8Be. The crystal model has been modified according to solid state physics which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has been obtained from the analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in general form. The equation used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in 6Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+6,7Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both radius and density distribution of light nuclei. The model failed to calculate the radius of 9Be, so modifications should be done to overcome discrepancy.
Keywords: nuclear lattice, crystal model, light nuclei, nuclear density distributions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4318079 First Principles Study of Structural and Elastic Properties of BaWO4 Scheelite Phase Structure under Pressure
Authors: A. Benmakhlouf, A. Bentabet
Abstract:
In this paper, we investigated the athermal pressure behavior of the structural and elastic properties of scheelite BaWO4 phase up to 7 GPa using the ab initio pseudo-potential method. The calculated lattice parameters pressure relation have been compared with the experimental values and found to be in good agreement with these results. Moreover, we present for the first time the investigation of the elastic properties of this compound using the density functional perturbation theory (DFPT). It is shown that this phase is mechanically stable up to 7 GPa after analyzing the calculated elastic constants. Other relevant quantities such as bulk modulus, pressure derivative of bulk modulus, shear modulus; Young’s modulus, Poisson’s ratio, anisotropy factors, Debye temperature and sound velocity have been calculated. The obtained results, which are reported for the first time to the best of the author’s knowledge, can facilitate assessment of possible applications of the title material.Keywords: Pseudo-potential method, pressure, structural and elastic properties, scheelite BaWO4 phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21168078 Topology Preservation in SOM
Authors: E. Arsuaga Uriarte, F. Díaz Martín
Abstract:
The SOM has several beneficial features which make it a useful method for data mining. One of the most important features is the ability to preserve the topology in the projection. There are several measures that can be used to quantify the goodness of the map in order to obtain the optimal projection, including the average quantization error and many topological errors. Many researches have studied how the topology preservation should be measured. One option consists of using the topographic error which considers the ratio of data vectors for which the first and second best BMUs are not adjacent. In this work we present a study of the behaviour of the topographic error in different kinds of maps. We have found that this error devaluates the rectangular maps and we have studied the reasons why this happens. Finally, we suggest a new topological error to improve the deficiency of the topographic error.Keywords: Map lattice, Self-Organizing Map, topographic error, topology preservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30128077 Li4SiO4 Prepared by Sol-gel Method as Potential Host for LISICON Structured Solid Electrolytes
Authors: Syed Bahari Ramadzan Syed Adnan, Nor Sabirin Mohamed, Norwati K.A
Abstract:
In this study, Li4SiO4 powder was successfully synthesized via sol gel method followed by drying at 150oC. Lithium oxide, Li2O and silicon oxide, SiO2 were used as the starting materials with citric acid as the chelating agent. The obtained powder was then sintered at various temperatures. Crystallographic phase analysis, morphology and ionic conductivity were investigated systematically employing X-ray diffraction, Fourier Transform Infrared, Scanning Electron Microscopy and AC impedance spectroscopy. XRD result showed the formation of pure monoclinic Li4SiO4 crystal structure with lattice parameters a = 5.140 Å, b = 6.094 Å, c = 5.293 Å, β = 90o in the sample sintered at 750oC. This observation was confirmed by FTIR analysis. The bulk conductivity of this sample at room temperature was 3.35 × 10-6 S cm-1 and the highest bulk conductivity of 1.16 × 10-4 S cm-1 was obtained at 100°C. The results indicated that, the Li4SiO4 compound has potential to be used as host for LISICON structured solid electrolyte for low temperature application.Keywords: Conductivity, LISICON, Li4SiO4, Solid electrolyte, Structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33208076 Structural and Optical Properties ofInxAlyGa1-x-yN Quaternary Alloys
Authors: N. H. Abd Raof, H. Abu Hassan, S.K. Mohd Bakhori, S. S. Ng, Z. Hassan
Abstract:
Quaternary InxAlyGa1-x-yN semiconductors have attracted much research interest because the use of this quaternary offer the great flexibility in tailoring their band gap profile while maintaining their lattice-matching and structural integrity. The structural and optical properties of InxAlyGa1-x-yN alloys grown by molecular beam epitaxy (MBE) is presented. The structural quality of InxAlyGa1-x-yN layers was characterized using high-resolution X-ray diffraction (HRXRD). The results confirm that the InxAlyGa1-x-yN films had wurtzite structure and without phase separation. As the In composition increases, the Bragg angle of the (0002) InxAlyGa1-x-yN peak gradually decreases, indicating the increase in the lattice constant c of the alloys. FWHM of (0002) InxAlyGa1-x-yN decreases with increasing In composition from 0 to 0.04, that could indicate the decrease of quality of the samples due to point defects leading to non-uniformity of the epilayers. UV-VIS spectroscopy have been used to study the energy band gap of InxAlyGa1-x-yN. As the indium (In) compositions increases, the energy band gap decreases. However, for InxAlyGa1-x-yN with In composition of 0.1, the band gap shows a sudden increase in energy. This is probably due to local alloy compositional fluctuations in the epilayer. The bowing parameter which appears also to be very sensitive on In content is investigated and obtained b = 50.08 for quaternary InxAlyGa1-x-yN alloys. From photoluminescence (PL) measurement, green luminescence (GL) appears at PL spectrum of InxAlyGa1-x-yN, emitted for all x at ~530 nm and it become more pronounced as the In composition (x) increased, which is believed cause by gallium vacancies and related to isolated native defects.Keywords: HRXRD, nitrides, PL, quaternary, UV-VIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15728075 Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance
Abstract:
A numerical study of a design concept for actively controlling wing twist is described in this paper. The concept consists of morphing elements which were designed to provide a rigid and seamless skin while maintaining structural rigidity. The wing structure is first modeled in CATIA V5 then imported into ANSYS for structural analysis. Athena Vortex Lattice method (AVL) is used to estimate aerodynamic response as well as aerodynamic loads of morphing wings, afterwards a structural optimization performed via ANSYS Static. Overall, the results presented in this paper show that the concept provides efficient wing twist while preserving an aerodynamically smooth and compliant surface. Sufficient structural rigidity in bending is also obtained. This concept is suggested as a possible alternative for morphing skin applications.Keywords: Aircraft, morphing, skin, twist.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9438074 Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method
Authors: B. Kahouadji, L. Guerbous, L. Lamiri, A. Mendoud
Abstract:
Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method.
Keywords: YPO4, Ce3+, 4fn- <->4fn-1 5d transitions, scintillator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27338073 Topochemical Synthesis of Epitaxial Silicon Carbide on Silicon
Authors: Andrey V. Osipov, Sergey A. Kukushkin, Andrey V. Luk’yanov
Abstract:
A method is developed for the solid-phase synthesis of epitaxial layers when the substrate itself is involved into a topochemical reaction and the reaction product grows in the interior of substrate layer. It opens up new possibilities for the relaxation of the elastic energy due to the attraction of point defects formed during the topochemical reaction in anisotropic media. The presented method of silicon carbide (SiC) formation employs a topochemical reaction between the single-crystalline silicon (Si) substrate and gaseous carbon monoxide (CO). The corresponding theory of interaction of point dilatation centers in anisotropic crystals is developed. It is eliminated that the most advantageous location of the point defects is the direction (111) in crystals with cubic symmetry. The single-crystal SiC films with the thickness up to 200 nm have been grown on Si (111) substrates owing to the topochemical reaction with CO. Grown high-quality single-crystal SiC films do not contain misfit dislocations despite the huge lattice mismatch value of ~20%. Also the possibility of growing of thick wide-gap semiconductor films on these templates SiC/Si(111) and, accordingly, its integration into Si electronics, is demonstrated. Finally, the ab initio theory of SiC formation due to the topochemical reaction has been developed.
Keywords: Epitaxy, silicon carbide, topochemical reaction, wide-bandgap semiconductors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10838072 Monte Carlo Simulation of the Transport Phenomena in Degenerate Hg0.8Cd0.2Te
Authors: N. Dahbi, M. Daoudi, A.Belghachi
Abstract:
The present work deals with the calculation of transport properties of Hg0.8Cd0.2Te (MCT) semiconductor in degenerate case. Due to their energy-band structure, this material becomes degenerate at moderate doping densities, which are around 1015 cm-3, so that the usual Maxwell-Boltzmann approximation is inaccurate in the determination of transport parameters. This problem is faced by using Fermi-Dirac (F-D) statistics, and the non-parabolic behavior of the bands may be approximated by the Kane model. The Monte Carlo (MC) simulation is used here to determinate transport parameters: drift velocity, mean energy and drift mobility versus electric field and the doped densities. The obtained results are in good agreement with those extracted from literature.Keywords: degeneracy case, Hg0.8Cd0.2Te semiconductor, Monte Carlo simulation, transport parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18278071 Adhesion Performance According to Lateral Reinforcement Method of Textile
Authors: Jungbhin You, Taekyun Kim, Jongho Park, Sungnam Hong, Sun-Kyu Park
Abstract:
Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected.
Keywords: Adhesion performance, lateral reinforcement, pull-out test, textile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11348070 On Submaximality in Intuitionistic Topological Spaces
Authors: Ahmet Z. Ozcelik, Serkan Narli
Abstract:
In this study, a minimal submaximal element of LIT(X) (the lattice of all intuitionistic topologies for X, ordered by inclusion) is determined. Afterwards, a new contractive property, intuitionistic mega-connectedness, is defined. We show that the submaximality and mega-connectedness are not complementary intuitionistic topological invariants by identifying those members of LIT(X) which are intuitionistic mega-connected.Keywords: Intuitionistic set; intuitionistic topology;intuitionistic submaximality and mega-connectedness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17168069 A Fast, Portable Computational Framework for Aerodynamic Simulations
Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo
Abstract:
We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.Keywords: Unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12118068 Discrete Polynomial Moments and Savitzky-Golay Smoothing
Authors: Paul O'Leary, Matthew Harker
Abstract:
This paper presents unified theory for local (Savitzky- Golay) and global polynomial smoothing. The algebraic framework can represent any polynomial approximation and is seamless from low degree local, to high degree global approximations. The representation of the smoothing operator as a projection onto orthonormal basis functions enables the computation of: the covariance matrix for noise propagation through the filter; the noise gain and; the frequency response of the polynomial filters. A virtually perfect Gram polynomial basis is synthesized, whereby polynomials of degree d = 1000 can be synthesized without significant errors. The perfect basis ensures that the filters are strictly polynomial preserving. Given n points and a support length ls = 2m + 1 then the smoothing operator is strictly linear phase for the points xi, i = m+1. . . n-m. The method is demonstrated on geometric surfaces data lying on an invariant 2D lattice.Keywords: Gram polynomials, Savitzky-Golay Smoothing, Discrete Polynomial Moments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27918067 Maximizer of the Posterior Marginal Estimate of Phase Unwrapping Based On Statistical Mechanics of the Q-Ising Model
Authors: Yohei Saika, Tatsuya Uezu
Abstract:
We constructed a method of phase unwrapping for a typical wave-front by utilizing the maximizer of the posterior marginal (MPM) estimate corresponding to equilibrium statistical mechanics of the three-state Ising model on a square lattice on the basis of an analogy between statistical mechanics and Bayesian inference. We investigated the static properties of an MPM estimate from a phase diagram using Monte Carlo simulation for a typical wave-front with synthetic aperture radar (SAR) interferometry. The simulations clarified that the surface-consistency conditions were useful for extending the phase where the MPM estimate was successful in phase unwrapping with a high degree of accuracy and that introducing prior information into the MPM estimate also made it possible to extend the phase under the constraint of the surface-consistency conditions with a high degree of accuracy. We also found that the MPM estimate could be used to reconstruct the original wave-fronts more smoothly, if we appropriately tuned hyper-parameters corresponding to temperature to utilize fluctuations around the MAP solution. Also, from the viewpoint of statistical mechanics of the Q-Ising model, we found that the MPM estimate was regarded as a method for searching the ground state by utilizing thermal fluctuations under the constraint of the surface-consistency condition.
Keywords: Bayesian inference, maximizer of the posterior marginal estimate, phase unwrapping, Monte Carlo simulation, statistical mechanics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17158066 Unsteady 3D Post-Stall Aerodynamics Accounting for Effective Loss in Camber Due to Flow Separation
Authors: Aritras Roy, Rinku Mukherjee
Abstract:
The current study couples a quasi-steady Vortex Lattice Method and a camber correcting technique, ‘Decambering’ for unsteady post-stall flow prediction. The wake is force-free and discrete such that the wake lattices move with the free-stream once shed from the wing. It is observed that the time-averaged unsteady coefficient of lift sees a relative drop at post-stall angles of attack in comparison to its steady counterpart for some angles of attack. Multiple solutions occur at post-stall and three different algorithms to choose solutions in these regimes show both unsteadiness and non-convergence of the iterations. The distribution of coefficient of lift on the wing span also shows sawtooth. Distribution of vorticity changes both along span and in the direction of the free-stream as the wake develops over time with distinct roll-up, which increases with time.Keywords: Post-stall, unsteady, wing, aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9908065 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium
Authors: Nidhal Jamia, Sami El-Borgi
Abstract:
In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.
Keywords: Functionally graded piezoelectric material, mixed-mode crack, non-local theory, Schmidt method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9988064 Lattice Dynamics of (ND4Br)x(KBr)1-x Mixed Crystals
Authors: Alpana Tiwari, N. K. Gaur
Abstract:
We have incorporated the translational rotational (TR) coupling effects in the framework of three body force shell model (TSM) to develop an extended TSM (ETSM). The dynamical matrix of ETSM has been applied to compute the phonon frequencies of orientationally disordered mixed crystal (ND4Br)x(KBr)1-x in (q00), (qq0) and (qqq) symmetry directions for compositions 0.10≤x≤0.50 at T=300K.These frequencies are plotted as a function of wave vector k. An unusual acoustic mode softening is found along symmetry directions (q00) and (qq0) as a result of translation-rotation coupling.Keywords: Orientational glass, phonons, TR-coupling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12498063 Thermoelectric Properties of Doped Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltzmann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model.
Keywords: Conductivity, polycrystalline silicon, relaxation time approximation, Seebeck coefficient, thermoelectric property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318062 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal
Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen
Abstract:
In this study, we demonstrate a high-resolution refractive index sensor based on a Magnetic Photonic Crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.
Keywords: Magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15248061 Weighted Harmonic Arnoldi Method for Large Interior Eigenproblems
Authors: Zhengsheng Wang, Jing Qi, Chuntao Liu, Yuanjun Li
Abstract:
The harmonic Arnoldi method can be used to find interior eigenpairs of large matrices. However, it has been shown that this method may converge erratically and even may fail to do so. In this paper, we present a new method for computing interior eigenpairs of large nonsymmetric matrices, which is called weighted harmonic Arnoldi method. The implementation of the method has been tested by numerical examples, the results show that the method converges fast and works with high accuracy.
Keywords: Harmonic Arnoldi method, weighted harmonic Arnoldi method, eigenpair, interior eigenproblem, non symmetric matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15498060 Effects of Dopant Concentrations on Radiative Properties of Nanoscale Multilayer with Coherent Formulation for Visible Wavelengths
Authors: S. A. A. Oloomi , M. Omidpanah
Abstract:
Semiconductor materials with coatings have a wide range of applications in MEMS and NEMS. This work uses transfermatrix method for calculating the radiative properties. Dopped silicon is used and the coherent formulation is applied. The Drude model for the optical constants of doped silicon is employed. Results showed that for the visible wavelengths, more emittance occurs in greater concentrations and the reflectance decreases as the concentration increases. In these wavelengths, transmittance is negligible. Donars and acceptors act similar in visible wavelengths. The effect of wave interference can be understood by plotting the spectral properties such as reflectance or transmittance of a thin dielectric film versus the film thickness and analyzing the oscillations of properties due to constructive and destructive interferences. But this effect has not been shown at visible wavelengths. At room temperature, the scattering process is dominated by lattice scattering for lightly doped silicon, and the impurity scattering becomes important for heavily doped silicon when the dopant concentration exceeds1018cm-3 .
Keywords: Dopant Concentrations, Radiative Properties, Nanoscale Multilayer, Coherent Formulation, Visible Wavelengths
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14428059 Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis
Authors: Jin Sup Kim, Woo Young Jung, Minho Kwon
Abstract:
In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.Keywords: Dynamic, α-Method, P-Method, PC α-Method, Newmark method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30788058 Nice Stadium: Design of a Flat Single Layer ETFE Roof
Authors: A. Escoffier, A. Albrecht, F. Consigny
Abstract:
In order to host the Football Euro in 2016, many French cities have launched architectural competitions in recent years to improve the quality of their stadiums. The winning project in Nice was designed by Wilmotte architects together with Elioth structural engineers. It has a capacity of 35,000 seats.Its roof structure consists of a complex 3D shape timber and steel lattice and is covered by 25,000m² of ETFE, 10,500m² of PES-PVC fabric and 8,500m² of photovoltaic panels.
This paper focuses on the ETFE part of the cover. The stadium is one of the first constructions to use flat single layer ETFE on such a big area. Due to its relatively recent appearance in France, ETFE structures are not yet covered by any regulations and the existing codes for fabric structures cannot be strictly applied. Rather, they are considered as cladding systems and therefore have to be approved by an “Appréciation Technique d’Expérimentation” (ATEx), during which experimental tests have to be performed. We explain the method that we developed to justify the ETFE, which eventually led to bi-axial tests to clarify the allowable stress in the film.
Keywords: Biaxial test, creep, ETFE, single layer, stadium roof.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33348057 The Comparative Investigation and Calculation of Thermo-Neutronic Parameters on Two Gens II and III Nuclear Reactors with Same Powers
Authors: Mousavi Shirazi, Seyed Alireza, Rastayesh, Sima
Abstract:
Whereas in the third generation nuclear reactors, dimensions of core and also the kind of coolant and enrichment percent of fuel have significantly changed than the second generation, therefore in this article the aim is based on a comparative investigation between two same power reactors of second and third generations, that the neutronic parameters of both reactors such as: K∞, Keff and its details and thermal hydraulic parameters such as: power density, specific power, volumetric heat rate, released power per fuel volume unit, volume and mass of clad and fuel (consisting fissile and fertile fuels), be calculated and compared together. By this comparing the efficiency and modification of third generation nuclear reactors than second generation which have same power can be distinguished. In order to calculate the cited parameters, some information such as: core dimensions, the pitch of lattice, the fuel matter, the percent of enrichment and the kind of coolant are used. For calculating the neutronic parameters, a neutronic program entitled: SIXFAC and also related formulas have been used. Meantime for calculating the thermal hydraulic and other parameters, analytical method and related formulas have been applied.Keywords: Nuclear reactor, second generation, third generation, thermo-neutronics parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16218056 Structure of Covering-based Rough Sets
Authors: Shiping Wang, Peiyong Zhu, William Zhu
Abstract:
Rough set theory is a very effective tool to deal with granularity and vagueness in information systems. Covering-based rough set theory is an extension of classical rough set theory. In this paper, firstly we present the characteristics of the reducible element and the minimal description covering-based rough sets through downsets. Then we establish lattices and topological spaces in coveringbased rough sets through down-sets and up-sets. In this way, one can investigate covering-based rough sets from algebraic and topological points of view.
Keywords: Covering, poset, down-set, lattice, topological space, topological base.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18508055 Evolutionary Dynamics on Small-World Networks
Authors: Jan Rychtar, Brian Stadler
Abstract:
We study how the outcome of evolutionary dynamics on graphs depends on a randomness on the graph structure. We gradually change the underlying graph from completely regular (e.g. a square lattice) to completely random. We find that the fixation probability increases as the randomness increases; nevertheless, the increase is not significant and thus the fixation probability could be estimated by the known formulas for underlying regular graphs.Keywords: evolutionary dynamics, small-world networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12388054 The Evaluation of Load-Bearing Capacity of the Planar CHS Joint Using Finite Modeling
Authors: Anežka Jurčíková, Miroslav Rosmanit
Abstract:
The subject of this paper is to verify the behavior of the truss-type CHS joint which is beyond the scope of use of the EN 1993-1-8. This is performed by using the numerical modeling in program ANSYS and the analytical methods recommended in the CIDECT publication. The recommendations for numerical modeling of such types of joints as well as for evaluation of load-bearing capacity of the joint are given in this paper. The results from both analytical and numerical models are compared.
Keywords: ANSYS, CHS joints, FEM, Lattice structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19238053 Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance
Abstract:
An investigation of adaptable winglets for enhancing morphing aircraft performance is described in this paper. The concepts investigated consist of various winglet configurations fundamentally centered on a baseline swept wing. The impetus for the work was to identify and optimize winglets to enhance the aerodynamic efficiency of a morphing aircraft. All computations were performed with Athena Vortex Lattice modelling with varying degrees of twist and cant angle considered. The results from this work indicate that if adaptable winglets were employed on aircraft’s improvements in aircraft performance could be achieved.Keywords: Aircraft, drag, twist, winglet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23218052 Simulation of a Multi-Component Transport Model for the Chemical Reaction of a CVD-Process
Abstract:
In this paper we present discretization and decomposition methods for a multi-component transport model of a chemical vapor deposition (CVD) process. CVD processes are used to manufacture deposition layers or bulk materials. In our transport model we simulate the deposition of thin layers. The microscopic model is based on the heavy particles, which are derived by approximately solving a linearized multicomponent Boltzmann equation. For the drift-process of the particles we propose diffusionreaction equations as well as for the effects of heat conduction. We concentrate on solving the diffusion-reaction equation with analytical and numerical methods. For the chemical processes, modelled with reaction equations, we propose decomposition methods and decouple the multi-component models to simpler systems of differential equations. In the numerical experiments we present the computational results of our proposed models.
Keywords: Chemical reactions, chemical vapor deposition, convection-diffusion-reaction equations, decomposition methods, multi-component transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411