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Abstract—The current study couples a quasi-steady Vortex Lattice
Method and a camber correcting technique, ‘Decambering’ for
unsteady post-stall flow prediction. The wake is force-free and
discrete such that the wake lattices move with the free-stream once
shed from the wing. It is observed that the time-averaged unsteady
coefficient of lift sees a relative drop at post-stall angles of attack
in comparison to its steady counterpart for some angles of attack.
Multiple solutions occur at post-stall and three different algorithms
to choose solutions in these regimes show both unsteadiness and
non-convergence of the iterations. The distribution of coefficient of
lift on the wing span also shows sawtooth. Distribution of vorticity
changes both along span and in the direction of the free-stream as
the wake develops over time with distinct roll-up, which increases
with time.
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I. INTRODUCTION

IT has been long established that panel methods, such as the

Discrete vortex element method (DVEM) for simulating

airfoils or the Vortex Lattice Method (VLM) for simulating

wings, can predict aerodynamic coefficients quite reliably

at pre-stall angles of attack. For post-stall angles of attack,

methods that incorporate viscosity and predict flow separation,

such as Reynolds Averaged Navier-Stokes (RANS) solver,

Large Eddy simulation (LES) and Direct Numerical Simulation

(DNS) take a large amount of time and computational

resources. Even then, predictions from such methods at high

angles of attack exhibit significant variations as has been

discussed in [1]. Hence, several approaches utilising a strip

theory approach along with panel methods have been tried to

predict post-stall aerodynamic coefficients.

One of the approaches involves correction of the circulation

strength, Γ of the bound vortex filament. Tani [2] was the first

to try such a method. He implemented a LLT formulation

with 2D non-linear lift curve slope data as input to account

for stall. His method worked upto the max Cl but his method

didn’t work once a particular section attained stall. In other

words, the method was unable to handle the negative slope in

the Cl- α curve that is seen beyond the max Cl.

Schairer [3] developed a similar method, where he used

a trial and error method to find solutions. He demonstrated

the presence of multiple solutions at post-stall angles when
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the Cl-α curve has a negative slope. He also observed that

over a narrow range of α, asymmetric solutions were possible

and commented that this could be the reason for violent roll

moments.

Pizkin and Lewinsky [4] used a vortex lattice method

containing a single vortex ring at each section with an unsteady

wake. Their results showed the existence of sawtooth in section

Cl distributions along the span of the wing. Their results also

exhibited hysteresis with increasing and decreasing α showing

the dependency of the solution on starting conditions. The stall

hysteresis was also linked with aspect ratio of the wing and the

negative slope of the non-linear data. The authors reported the

presence of asymmetric solutions as well as multiple solutions.

Anderson [5] developed a lifting line theory that accounted

for non-linearity. The authors didn’t find asymmetric solutions

but found multiple solutions at post-stall. Post stall solutions

upto 50◦ were calculated but the author cautions for the use

of LLT for such high angles of attack. Mccormick [6] used a

non-linear LLT and observed that no asymmetry existed. The

authors studied the roll of the wing for cases close to stall.

The second approach utilized an alpha correction and was

tried by Tseng and Lan [7]. The α at each section is changed

depending on the difference between potential and viscous

coefficients of lift (ΔCl = (Cl)pot − (Cl)visc). The authors

used their methods to study fighter plane configurations. They

found the point of separation from ΔCl and then calculated the

α correction using this point of separation information. Van

Dam [8] implemented a similar methodology with a slight

change in the approach by linking the ΔCl directly to the

α correction. The authors were concerned with developing

a rapid predictive tool even at post-stall for conceptual

and preliminary design stages. The authors were particularly

interested in calculating the max CL. Different airfoil data

could be given as input for different sections of the wing.

In the ‘decambering’ approach developed by Mukherjee

and Gopalarathnam [9], the effective loss in camber of the

wing-section (local airfoil) due to flow separation at high

angles of attack is accounted for using the residuals, i.e. ΔCl

and ΔCm. This is the first instance, where Cm is also used.

The change in camber is characterised by two linear functions.

Based on the ΔCl and ΔCm the camber at each section is

corrected. This results in a correction of both the Γ (and

as a result the Cl and Cm) and α at each iteration, thereby

establishing a direct relationship between the two.

Both Tseng and Lan [7] and Mukherjee and

Gopalarathnam [9] implemented a physical change to
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the section in which correction is being done, the former [7]

in the form of a variation in the separation point and the

latter [9] in the form of camber correction. The implication

here is that a viscous correction of Γ or α has to follow or

be followed by some physical change, as would happen in a

real flow when Γ or α changes.

It is important to note here that a comprehensive

understanding of strip theory stall predictions in an unsteady

setting is not yet attained. The work reported in this paper

lays the foundation tools for gaining further insights in this

direction. The primary objective of this work is to extend

the in-house Decambering methodology to model unsteady
post-stall flow by coupling an Unsteady Vortex Lattice Method

with the Decambering methodology.

II. NUMERICAL METHODOLOGY

The objective of this section is to couple the in-house

decambering method, developed by Mukherjee et al. [9] to an

Unsteady Vortex Lattice Method (UVLM). The decambering

method ensures that aerodynamic coefficients predicted using

the UVLM accounts for viscous effects in a way similar to

aerodynamic coefficients predicted in a viscous domain. The

decambering method requires an airfoil’s 2D steady Cl−α and

Cm −α as input. Thus utilizing 2D steady data, 3D unsteady

data can be predicted.

1) Unsteady Vortex Lattice Method: The UVLM is used to

predict transient aerodynamic coefficients CL(t) and CM (t).
The wake behind the wing is force-free for an unsteady case.

The evolution of the wake, as seen in Fig. 1, at each time step

is calculated and the influence on the wing is studied.

(a) Time step, n=0 (b) Time step, n=1 (c) Time step, n=2

Fig. 1 Wake evolution in the UVLM

2) Wake Vortex Filament with Finite Core: The velocity

induced by the vortex filament, −→v ind, is inversely proportional

to the distance between the filament and the point at which

velocity is induced. When this distance becomes too small,

numerical singularity arises. In order to avoid such singularity,

a finite Rankine vortex-core is introduced around the wake

vortex filament as seen in Fig. 2b and the corresponding

induced velocities are calculated avoiding singulrities is given

by (1). For a vortex filament of length r0, a core of length

lc = r0 + rc is used, rc being the radius of the core.

−→v ind =

⎧⎪⎨
⎪⎩

Γ
4π

−→r1×−→r2
|−→r1×−→r2|2

−→r0 ·
(−→r1

r1
− −→r2

r2

)
, r > rc

Γ
4π

−→r1×−→r2
|−→r0|2|−→rc|2

−→r0 ·
(−→r1

r1
− −→r2

r2

)
, 0 ≤ r ≤ rc

(1)

(a) Velocity induced by
vortex filament.

(b) Vortex core surrounding
a vortex filament.

Fig. 2 Wake vortex filament

3) Wake Definition: The fixed horse shoe vortices in VLM

are done away with and the wake is represented by freely

evolving wake vortex rings. If the wing is assumed to start

from rest, or if initially there is no fluid motion, then at the

first time step there is no wake as shown in Fig. 1a. At each

subsequent time-step the trailing edge bound vortex rings of

the previous time-step are shed into the fluid stream as wake

vortex rings as seen in Figs. 1b and 1c. The circulation of

the recently shed wake vortex remains the same as that of

the circulation of TE bound vortex rings from the previous

time-steps. The distance travelled by the shed wake at each

time-step is found by calculating the velocity induced on each

of the 4 vertices, by the wings, wake and the free stream

velocity and moving each vertex by a distance given by (2).

−→
Δx =

−→
Vv ·Δt (2)

Where,

−→
Vv =

−→
U∞ +

Npan∑
j=1

(−→vbr)j +
NWn∑
k=1

(−→vwr)k

n is the current time step index, with the first time step starting

at n=0; NWn=NY×n is the number of wake vortex rings at

the particular time-step; vbr and vwr are the velocity induced

by a bound and wake vortex ring respectively; Npan is the

total number of panels or bound vortex rings in the wing(s);

U∞ is the free stream velocity.

4) Circulation of Bound Vortex: The circulation of the

wake and its position at any given time-step is known, which

means the wake is no longer an unknown quantity and is

calculated as shown in (3).

Npan∑
j=1

(−→vbr · n̂i)j +

NWn∑
k=1

(−→vwr · n̂i)k +
−→
U∞ · n̂i = 0 (3)

The unknown quantity is the circulation of the bound vortex

rings, Γbr, which is given by (4) for the unsteady case.

[IC](Npan×Npan) [Γbr](Npan×1) = −
[(−→

U∞ +
−−→
Vwr

)
· n̂

]
(Npan×1)

(4)

where,

−−→
Vwr =

NWn∑
k=1

(−→vwr)k

−−→
Vwr is the sum of velocity induced by all the wake vortex

rings at a certain point.
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5) Unsteady Aerodynamic Coefficients: The pressure

difference across each panel, which has both steady and

unsteady components is calculated using (5) followed by

the force using (6). Finally, the transient coefficients of lift,

CL(t) and pitching moment, CM (t) from the force.

Δpi,j = ρ

{(−→
U∞ +

−−→
Vwr

)
· (−→τc )i,j

δ

δx
Γbr

}
+

ρ

{(−→
U∞ +

−−→
Vwr

)
· (−→τs )i,j

δ

δy
Γbr +

δ

δt
Γbr

}
(5)

where,

δ

δx
Γbr =

Γn
i,j − Γn

i−1,j

Δci,j
;

δ

δy
Γbr =

Γn
i,j − Γn

i,j−1

Δbi,j
;

δ

δt
Γbr =

Γn
i,j − Γn−1

i,j

Δt

i, j being the panel indices, Δc, Δb are the average length of

the panel and τc, τs are the panel unit vectors in the direction

of the panel chord and span respectively. Γbr is the circulation

of a bound vortex ring. Γn
i,j represents the circulation of the

bound vortex ring at panel i, j at time step n, the subscript ‘br’

has been omitted for brevity. Δt is the time increment between

successive time-steps and ρ is the density of the fluid.

The force on each panel of area, Δs = Δc × Δb, is given

by (6).

Δ
−−→
Fi,j = (Δpi,jΔsi,j) n̂i,j (6)

Let −→pi,j =
−→
U∞ × (−→τc )i,j . Then the lift of the entire wing is

given by (7) and CL and CM can be calculated from this.

−→
L =

NX∑
i=1

NY∑
j=1

(ΔLi,j) =

NX∑
i=1

NY∑
j=1

(
Δ
−−→
Fi,j ·

−→pi,j
|−→pi,j |

)
(7)

A. Decambering

The decambering methodology developed by Mukherjee et

al. [9] is similar in implementation to the Nascent Vortex

method presented here. The decambering method tries to

account for the discrepancy between the inviscid aerodynamic

coefficients (Cl)pot and (Cm)pot and the viscous aerodynamic

coefficients (Cl)visc and (Cm)visc after flow separation by

modifying the effective camber of the lifting line.

1) 2D Methodology: The typical flow past an airfoil at low

angles of attack consists of a thin attached boundary layer on

the airfoil surface as seen in Fig. 3a. With increasing angles

of attack, the boundary layer thickens on the upper surface

and finally separates as shown in Fig. 3b. Now the flow no

longer follows the camber of the airfoil, i.e. the effective

camber that the airfoil enforces on the flow is different

from the actual camber. If this change in effective camber

can be quantified then the difference ΔCl=(Cl)visc-(Cl)pot
and ΔCm=(Cm)visc-(Cm)pot can be evaluated. Conversely,

if this difference is known then the effective camber can be

calculated.

The change in effective camber is characterised by two

linear functions, δ1 and δ2 placed on the camber of the airfoil

at positions x1 and x2 respectively as shown in Fig. 4 and

calculated using the residuals, ΔCl & ΔCm using (8).

(a) Attached Flow (b) Separated Flow

Fig. 3 Flow over an airfoil

δ1 =
[ΔCl − 2 (π − θ2) + 2sinθ2] δ2

2π

δ2 =
ΔCm

1
4sin2θ2 − 1

2sinθ2
(8)

where,

θ2 = cos−1

(
1− 2x2

c

)
;

x2

c
= 0.8

Fig. 4 Decambering Functions

2) 3D Methodology: A multi-dimensional Newton iteration

is used for a 3D wing to find the section-wise decambering,

δ1 and δ2 using which, the local target angle of attack, αt at

each section and the corresponding sectional target viscous

aerodynamic coefficients, (Cl)t and (Cm)t obtained from

the input airfoil data corresponding to αt and the predicted

coefficients (Cl)s and (Cm)s using the decambered wing from

potential theory are calculated. The objective here is to predict

the decambering correctly so that the residuals are minimized.

3) Finding Local and Target Angle of Attack: The local

angle of attack at each section is found by using (9).

αsec =
(Cl)sec
2π

− δ1 − δ2

[
1− θ2

π
+

sinθ2
π

]
+ α0l (9)

where, α0l is the zero lift angle of attack of the airfoil used.

To find the local αsec the coefficient of lift (Cl)sec and the

decambering characteristics δ1 and δ2 has to be known.

To find the target alpha at a particular section the sectional

Cls and αs are found. Then the δ1 is perturbed and new values

of sectional Cln and αn are generated. The slope of the line

joining αs, Cls and αn, Cln is now calculated. The point at

which this line meets the input data’s Cl − α curve is noted.

This point provides the target angle of attack (αt) and target

coefficient of lift (Clt) for the particular section.

4) Handling Multiple Solutions: One of the effects of

finding targets this way is that multiple solutions are obtained

at times depending on the slope of the line. Three instances of

the line intersecting with the input aerodynamic data is shown

in Fig. 5. Lines L1 and L3 has only one solution, while line

L2 three solutions.

In order to aid this selection, a logical switch called

lpoststall is used at each section, which is set to TRUE or
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Fig. 5 Inclined Trajectory Lines

Fig. 6 Multiple Solutions at post-stall angle of attack

FALSE if the section under consideration is stalled or unstalled.

If there are multiple solutions at a particular section the status

of this switch is checked. If it is FALSE, solution 1 is selected

and if it is TRUE, solution 3 is selected as shown in Figs. 5

and 6.

Two other Multiple Solution Selection Methods (MSSM)

have been proposed to circumvent this problem as listed below

and as shown in Fig. 6.

MSSM 1: This method has been previously discussed as

part of the decambering methodology. The solution

is represented by the green point marked as "1".

MSSM 2: The intersection point whose α is closest to the

wing α is chosen as the target, which is the green

point marked as "2".

MSSM 3: The intersection point whose α is closest to

the local α calculated from the previous iteration is

chosen, which is the red point marked "3".

5) Iteration: The steps of the iteration to implement

steady-state decambering method are listed here in brief.

1) Assume starting decambering, δ1 & δ2 values at all

sections of the wing.

2) Compute aerodynamic coefficients of the decambered

wing, (Cl)inv and (Cm)inv using Vortex Lattice

Method.

3) Compute local effective AOA, αsec of each decambered

section.

4) Obtain target aerodynamic coefficients corresponding to

αsec, (Cl)visc and (Cm)visc from input airfoil data for

each decambered section.

5) Calculate residuals ΔCl = (Cl)visc−(Cl)inv & ΔCm =

(Cm)visc − (Cm)inv using one of two schemes.

6) If the residuals are within tolerance, iteration has

converged. The starting values of the decambering can

be considered as the final values.

7) Else re-compute Jacobian. Solve J.δx = −F to find δx.

Update δ1 & δ2 and repeat from step 2.

B. Coupling Decambering and UVLM

Decambering is a steady method and as such utilizes steady

2D viscous aerodynamic coefficients as input to account for

viscous effects. The circulation of the vortex rings, Γbr, at

each section is modified according to the input (Cl)visc and

(Cm)visc. In the UVLM the Γbr at each time step is similarly

modified. However while calculating the Cls and Cms from

Γbr, while iterating for a decambered solution, the unsteady

part in (5) is ignored as we assume each section to be locally

steady at that particular time-step. Once a converged solution

is obtained the Cls and Cms at each section is recalculated,

this time taking into account the unsteady part of (5). This

way we obtain 3D unsteady data from 2D steady data.

III. RESULTS

The unsteady CL for a suddenly moving elliptic wing is

compared with analytical results of Jones et al. [10] as seen

in Fig. 7. A pretty close match is observed throughout except

at (U∞t)/c=0. This is because the acceleration is infinite in the

analytical model at t = 0. However, numerically only a finite

acceleration can be applied.

0 1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

(U
∞

t)/c

C
L

 

 

UVLM, AR = 3
UVLM, AR = 6
Jones, AR = 3
Jones, AR = 6

Fig. 7 Transient CL of a suddenly moving elliptic wing

The unsteady CL for a plunging wing at three different

reduced frequencies, k = 0.1, 0.3 and 0.5 is compared with

the results of Katz [11] as shown in Fig. 8.

0 1 2 3 4 5 6

−0.6

−0.4

−0.2

0

ω ⋅ t

C
L(t

)

 

 
UVLM, k=0.1
Katz, k=0.1
UVLM, k=0.3
Katz, k=0.3
UVLM, k=0.5
Katz, k=0.5

Fig. 8 Transient CL of plunging wing

The computatinal expenditure of the code is evaluated by

varying the three primary parameters, NX,NY and dt for
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a wing that starts from rest and keeps moving at a constant

velocity for 10 seconds. The time taken in seconds for each

run is shown in Fig. 9. The simulations were run in a HP

xw6600 workstation with 7.8 GB RAM and an Intel Xeon

processor with 3.0 GHz processing speed containing 4 cores.

0 0.5 1
0

1

2

3

4

5
x 10

4

Δ t

tim
e 

ta
ke

n,
 s

(a) NX = 8, NY = 32.

0 10 20
0

1

2

3

4

5
x 10

4

NX

tim
e 

ta
ke

n,
 s

(b) dt = 0.1, NY = 32.

0 50 100
0

1

2

3

4

5
x 10

4

NY

tim
e 

ta
ke

n,
 s

(c) dt = 0.1, NX = 4.

Fig. 9 Run time in seconds for varying parameter values

A suddenly moving wing of aspect ratio AR = 9 and

NACA4409 section is studied for inviscid and decambered

cases using UVLM developed for this purpose for Δt = 0.1.

The CL − α for such a case where the post-stall CL values

are calculated using the three different MSSMs is studied first

for the steady case as shown in Fig. 10a.

0 10 20 30 40
−0.5

0

0.5

1

1.5

α

C
L

 

 

Inviscid
MSSM=1
MSSM=2
MSSM=3

(a) Steady case.

0 10 20 30 40
−0.5

0

0.5

1

1.5

α

C
L(t

)

 

 

Inviscid
MSSM=1
MSSM=2
MSSM=3

(b) Time averaged unsteady case.

Fig. 10 Cl vs α for a rectangular NACA4409 wing. AR=9

For the unsteady case of the suddenly moving wing, the

0 2 4 6 8 10
1

1.5

2

2.5

3

U
∞

t/c

C
L(t

)

 

 

Inviscid
MSSM=1
MSSM=2
MSSM=3

Fig. 11 CL(t) of a suddenly moving NACA4409 wing, AR=9, α = 20◦.

angle of attack, α is varied from −5◦ to 40◦ in steps of 1◦.

The simulation at each angle of attack is run for 100 time-steps

while the Δt is kept constant at 0.1. In order to compare

unsteady case with that of the steady case, the CL(t) values

at (U∞t)/c > 7 is averaged over time and the variation of these

values over α and different MSSM is shown in Fig. 10b. The

variation of the CL with time is shown in Fig. 11, where the

different MSSMs do not display any variations indicating there

are no multiple solutions.

In Fig. 11 it is seen that the initial CL(t) value is quite

high and then falls low before stabilising as time increases

for the inviscid case. For the decambered case it seen that, the

CL(t), falls below the inviscid CL(t) after the initial time step,

however recovery of the CL(t) is minimal for the decambered

case. It can be inferred that there are no multiple solutions as

all three MSSM’s select the same solution at all time steps.

Similar plots for α = 30◦ and 40◦ can be seen in Fig. 12.

0 2 4 6 8 10
−5

0

5

10

15

U
∞

t/c

C
L(t

)

 

 

Inviscid
MSSM=1
MSSM=2
MSSM=3

(a) α = 30◦.

0 2 4 6 8 10

0

2

4

6

U
∞

t/c

C
L(t

)

 

 

Inviscid
MSSM=1
MSSM=2
MSSM=3

(b) α = 40◦.

Fig. 12 CL(t) of a suddenly moving NACA4409 wing, AR=9

For α = 30◦ shown in Fig. 12a it can be seen that MSSM

1 and 2 have strong oscillations throughout. This is due to

the unsteady part of the CL(t) kicking in when a particular

section changes from one solution to the other there by causing

a huge jump. It is seen that for MSSM=3 there are oscillations

of a relatively smaller amplitude but it does not converge at
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all time steps.

At α = 40◦ shown in Fig. 12b there are oscillations of a

much smaller magnitude. The three MSSM keeping choosing

the same solution suggesting that multiple solutions do not

exist. It is interesting that at deep stall there are oscillations

in CL(t) inspite of there being no multiple solutions.

The section Cl and effective α distribution along span of

the suddenly moving wing for α = 30◦ and at time-step, t=10

is shown in Fig. 13. It is seen that the solution has sawtooth

for both Cl and α for all three MSSM cases but MSSMs 1

and 2 select the same solution.
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Fig. 13 Variation of different MSSMs, section: NACA4409, AR=9,
α = 30◦, t=10

It should be noted the section α is pseudo-steady in nature

as it does not have an unsteady component as the Cl has in (5).

Thus, the section α can be directly related to the circulation

of the blade at each time step but the unsteady component has

to be taken into account in order to relate it to the section Cl.

The unsteady spanwise variation of section Cl and

circulation, Γ, for 3 consecutive time-steps, t = 9.8, 9.9 and

10 is shown in Fig. 14 for α = 30◦ and using MSSM = 1. It

is seen that at t = 9.9, both the section Cl and Γ peak but the

root section sees minimum Cl ≈ 1 and Γ suggesting that the

root has stalled.

The wake that evolves behind a suddenly moving wing is

shown in Fig. 15 for an inviscid wing at an α = 10◦. Wake

roll-up can be be observed for x
c ≈ 6 to 10, while the more

recently shed vortex rings are found for x
c ≈ 0 to 6. The

circulation strength is highest for the vortex rings shed from

the root for x
c ≥ 6 while this is more uniformly distributed

for x
c ≤ 6.

The wake profile for a decambered wing for MSSM= 1 and

α = 10◦ is shown in Fig. 16. It is seen that the circulation

strength of the wake of the decambered wing is lower than that

of the inviscid wing since decambering usually decreases the
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Fig. 14 Variation along span at different time-steps, section: NACA4409, AR
= 9, α = 30◦

Fig. 15 Wake behind a 3D inviscid wing.

circulation strength of the bound vortex rings. The oscillations

present in the wake vortices shed from the tips are suppressed

for the decambered wing.

The 2D sections of the wakes, at α = 10◦ and MSSM=
1, are plotted to obtain a better idea of wake evolution.

Longitudinal sections of the wake shed at the root, shown by

the line I-I in Fig. 16, and the tip, represented by the line J-J in

Fig. 16, are studied at t = 10 as shown in Fig. 17. The wake

roll-up is more prominent in the root section. It is also seen

Fig. 16 Wake behind a 3D decambered wing
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that the wake shed at the root moves downwards to a greater

extent indicating that the lift is higher at the root section. The

roll up of the wake from the decambered wing is lower when

compared to the inviscid wing.
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(a) Inviscid wing.
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(b) Decambered wing, MSSM= 1.

Fig. 17 Cross section of wake at t = 10

Wake portions lateral to the wing and shed at t = 0.1, 5
and 7.5, denoted by lines A-A, B-B and C-C in Fig. 16, are

allowed to evolve and their positions at t = 10 is studied

in order to understand the evolution of the wake. The wake

shed at t = 0.1, represented by A-A in Fig. 17, is the starting

vortex, and almost has the highest circulation among the vortex

filaments. It is seen that there is a dip in the filament as we

move from the root sections towards the tip. This is due to

the proximity to the tip vortex filaments. The starting vortex

is the primary reason for the wake roll-up.

The wake shed at t = 5 and t = 7.5 is represented by B-B

and C-C in Fig. 17. It is observed that B-B that was shed at

an earlier time step has evolved more and has moved in the

negative z-direction when compared to C-C. It is observed that

there is a movement in the negative z-direction here too as we

move from the root sections to the tip. Close to the tip the

vortex filament moves up. The dip is primarily attributed to

the tip vortex effect. Comparing Figs. 17a and 17b we can see

that the tip vortex effect of the decambered wing is much lower

than that of the inviscid wing. Overall decambering seems to

give rise to a weaker wake.

IV. CONCLUSION

A novel nascent vortex method is developed, which

accounts for viscous effects in an inviscid regime. Nascent

Vortex (NV) methodology in tandem with basic Discrete

vortex element method (DVEM) and Vortex lattice method

(VLM) is used to predict the aerodynamic coefficients and

separated flow characteristics of airfoils and wings, while

using 2D aerodynamic coefficients as input. The addition of

the nascent vortices enables the deviation of the aerodynamic

coefficients from their original inviscid values.

A steady-state decambering methodology originally

developed by Mukherjee et al. [9] is extended into the

unsteady regime with specific interest in the unsteady

post-stall regime. The unsteady vortex lattice method

(UVLM) is implemented and decambering is coupled with

it. Decambering had the capability of choosing a solution

from multiple solutions arising at post-stall using a selection

algorithm. Two new algorithms have been proposed and the

variations in the final solution due to this change has been

noted.

The UVLM captures the wake roll-up of the starting vortex

and the tip vortices for both the inviscid and decambered

cases. The decambered wing’s wake has vortices of weaker

circulation-strength when compared to the wake vortices from

the inviscid wing.
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