Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32731
A Fast, Portable Computational Framework for Aerodynamic Simulations

Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo


We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.

Keywords: Unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151


[1] R. E. Perez, P. W. Jansen, J. R. R. A. Martins, pyOpt: a python-based object-oriented framework for nonlinear constrained optimization, Structural and Multidisciplinary Optimization 45 (1) (2012) 101 – 118.
[2] J. J. Alonso, P. LeGresley, E. van der Weide, J. R. R. A. Martins, J. J. Reuther, pymdo: A framework for high-fidelity multi-disciplinary optimization, in: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA 20044480, 2004.
[3] Y.-Y. Chen, D. L. Bilyeu, L. Yang, S.-T. J. Yu, Solvcon: A python-based cfd software framework for hybrid parallelization, in: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-1065, 2011.
[4] L. Dalcin, N. Collier, P. Vignal, A. M. A. Cortes, V. M. Calo, Petiga: A framework for high-performance isogeometric analysis, Computer Methods in Applied Mechanics and Engineering 308 (2016) 151–181.
[5] M. Ghommem, M. R. Hajj, D. T. Mook, B. K. Stanford, P. S. Beran, L. T. Watson, Global optimization of actively-morphing flapping wings, Journal of Fluids and Structures 30 (2012) 210–228.
[6] B. K. Stanford, P. S. Beran, Analytical sensitivity analysis of an unsteady vortex-lattice method for flapping-wing optimization, Journal of Aircraft 47 (2010) 647–662.
[7] A. T. Nguyen, J.-K. Kim, J.-S. Han, J.-H. Han, Extended unsteady vortex-lattice method for insect flapping wings, Journal of Aircraft 0 (2016) 1–10.
[8] J. D. Colmenares, O. D. Lpez, S. Preidikman, Computational study of a transverse rotor aircraft in hover using the unsteady vortex lattice method, Mathematical Problems in Engineering 2015, article ID 478457.
[9] A. Rosenberg, A. Sharma, A prescribed-wake vortex lattice method for preliminary design of co-axial, dual-rotor wind turbines, Journal of Solar Energy Engineering 138 (2016) 1–9.
[10] B. F. Ng, H. Hesse, R. Palacios, J. M. R. Graham, E. C. Kerrigan, Aeroservoelastic state-space vortex lattice modeling and load alleviation of wind turbine blades, Wind Energy 18 (2015) 1317–1331.
[11] G. Tescione, C. S. Ferreira, G. van Bussel, Analysis of a free vortex wake model for the study of the rotor and near wake flow of a vertical axis wind turbine, Renewable Energy 87 (2016) 552–563.
[12] M. Jeona, S. Leea, S. Leeb, Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method, Renewable Energy 65 (2014) 207–212.
[13] M. F. Neef, D. Hummel, Euler Solutions for a Finite-Span Flapping Wing in Mueller T. J. (ed.), Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, American Institute of Aeronautics and Astronautics, Inc., Reston, 2004.
[14] M. Ghommem, V. Calo, Flapping wings in line formation flight: a computational analysis, The Aeronautical Journal 118 (2014) 485–501.
[15] J. Katz, A. Plotkin, Low-Speed Aerodynamics, Cambridge University Press, MA, 2001.