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Abstract—This paper presents unified theory for local (Savitzky-
Golay) and global polynomial smoothing. The algebraic framework
can represent any polynomial approximation and is seamless from
low degree local, to high degree global approximations. The repre-
sentation of the smoothing operator as a projection onto orthonormal
basis functions enables the computation of: the covariance matrix
for noise propagation through the filter; the noise gain and; the
frequency response of the polynomial filters. A virtually perfect Gram
polynomial basis is synthesized, whereby polynomials of degree
d = 1000 can be synthesized without significant errors. The perfect
basis ensures that the filters are strictly polynomial preserving. Given
n points and a support length ls = 2m + 1 then the smoothing
operator is strictly linear phase for the points xi, i = m+1 . . . n−m.
The method is demonstrated on geometric surfaces data lying on an
invariant 2D lattice.

Keywords—Gram polynomials, Savitzky-Golay Smoothing, Dis-
crete Polynomial Moments

I. INTRODUCTION

THE concept of moment invariants for pattern recognition
was introduced in 1962 by Hu [1]. In his computations

Hu used a geometric polynomial basis set f(x) =
∑n

i=1 cn xn

to determine the polynomial moments. The geometric poly-
nomials — called the Vandermonde basis1 here — have the
following serious disadvantages: a) the Vandermonde matrix
is poorly conditioned and quickly becomes degenerate as the
degree of the polynomial increases. There is no unique inverse
to a degenerate matrix and consequently these basis functions
are not suited for the synthesis of a signal. The maximum
degree of polynomial which can be used is approximately
dv,max = 10; b) the Vandermonde basis is not orthogonal
in the discrete space, and consequently the basis is not
polynomial preserving. This feature is important when doing
polynomial filtering such as Savitzky-Golay smoothing [2].

In the years ensuing Hu’s publication there was significant
development in the understanding of Polynomial moments
and their relationship to least square approximation [3]. The
main step forward in polynomial moments was associated
with the introduction of new polynomial bases [4]–[9], this
enabled the computation of moments of higher degree on
larger images; for example Zhu [10] was able to compute
global moments for images with a size of 256 × 256. The
of generating virtually perfect bases sets of arbitrary size can
be associated with Mukundan [11], his basis was limited to
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1The name Vandermonde basis is used here, since a matrix Bv containing
the geometric basis functions as columns is a Vandermonde matrix. The use
of this name is advantageous since it leads to the theory and difficulties in
inverting the matrix Bv

regular grids and the errors — be it very small errors — are
concentrated at lower degree polynomials. Then a new syn-
thesis procedure was introduced for the generation of unitary
discrete Gram polynomials on arbitrary nodes [12] and with a
computation accuracy comparable with the Fourier basis. The
availability of a unitary basis also enabled the development of
understanding with respect to spectral propagation of gaussian
noise and noise bandwidth of polynomial filters [13]. Discrete
polynomial moments are global approximations of data where
polynomials of high degree are used to model the details.

In 1964 Savitzky and Golay [2] introduced local polynomial
approximation to smooth and evaluate the derivatives noisy
spectrometer data. The smoothing was based on fitting a
geometric polynomial (Vandermonde basis set) of low degree
d to a data set of limited length, the original paper used a
maximum degree of dmax = 6 and the data length of ls = 25
also known as the support length or in filtering literature as
the bandwidth — a clear misnomer. Modden [14] pointed out
some errors in the original paper and extended the method
to larger support lengths. The method was extended to image
processing by a number of groups, e.g. by Rajagopalan [15].
All these applications are limited by the properties of the
Vandermonde basis and limits there applicability to low degree
approximations.

In 1990 two groups [16], [17], apparently independently,
proposed the use of Gram polynomials [18] in place of the
Vandermonde basis for Savitzky-Golay smoothing. Meer and
Weiss [16] state that the Chebyschev and Gram polynomials
are synonymous for the same set of basis functions; this
is only partially correct. The modified discrete Chebyschev
polynomials [19], [20] do not have a uniform scaling, where
as the Gram polynomials do. Furthermore, the polynomials
published by Meer and Weiss in their paper are not orthogonal.
Nevertheless, the use of Gram polynomials is an important
step in the improvement of the performance of orthogonal
moments. Theoretically the Gram polynomials should form
an ideal basis; however, their synthesis via the recurrence
relationship introduces serious errors which limit the degree
of polynomial which can be used: The recurrence relationship
for the Gram polynomials is,

gn(x) = 2 αn−1 x gn−1(x) − αn−1

αn−2
gn−2(x), (1)

whereby,

αn−1 =
m

n

(
n2 − 1/2
m2 − n2

)1/2

(2)

and

g0(x) = 1, g−1(x) = 0 and α−1 = 1, (3)
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x is computed on equidistant points,

x = −1 +
(2k − 1)

m
, 1 ≤ k ≤ m, (4)

note these points do not span the full range [−1, 1]. The bases
functions are scaled by

√
m yielding a unitary bases set. Now

consider the matrix Gn = [g0(x), . . . gn(x)], whereby the
ith column correspond to the ith. basis function gi(x). It G
contains an ideal unitary bases set then, P = GT G = I, and
consequently, the projection error Pe = P − I = 0 should
yield a matrix which is uniformly zero. To demonstrate the
limits associated with the generation of the Gram recurrence
relationship a basis was computed for m = 100 and n = 40
the associated projection error is shown in Figure 1. The
errors are in the range ε = 10−13 these are small but
already significantly larger than the computational accuracy
of MATLAB, indicating that the errors associated with the
recurrence relationship are now dominant. The highest feasible
degree for a Gram polynomial generated in this manner was
n = 20 when computed for m = 100 points; at higher degrees
the error exceeded the numerical error limit in MATLAB of
eps = 10−16. With this, the Savitzky-Golay method remains
a local polynomial approximation with limited degree, unable
to reach the dimensions associated with global approximations
of images.
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Fig. 1. The projection error Pe associated with the Gram basis set for
m = 100 and n = 40. The errors are in the range ε = 10−13 these
are small but already significantly larger than the computational accuracy
available, indicating that the errors associated with the recurrence relationship
are now dominant.

Mukundan [11] published a synthesis algorithm which
produces a high quality basis with almost arbitrary degree.
However, the errors are concentrated at lower degrees and
the algorithm is limited to regular nodes. In 2008 O’Leary
and Harker [12] published an algorithm which enabled the
synthesis of a virtually perfect discrete orthogonal basis on
arbitrary nodes – the node are truly arbitrary, the algorithm
also functions for complex nodes. This algorithm is used in
this paper for the generation of all orthogonal bases.

This paper presents a unified framework for local and global
polynomial approximation, with or without weighting. The
main contribution of this paper are:

1) a unified algebraic framework is presented for the syn-
thesis and analysis of polynomial approximations;

2) the framework delivers an exact method of computing
the frequency response of polynomial filters. It also
shows the tendency of a polynomial approximation to
exhibit oscillations at the border of their support;

3) the synthesis algorithm proposed by O’Leary and Harker
[12] is used to generate a virtually perfect Gram poly-
nomial basis. This makes polynomial approximation of
arbitrary degree possible;

4) the frequency response of the polynomial approximation
is combined with regularization theory to enable the
computation of the noise gain associated with the filters;

5) the covariance propagation for gaussian noise is com-
puted;

6) the polynomial approximations can be computed for
irregular nodes and for data with missing samples, if
required;

7) it is proved that the polynomial approximations pre-
sented are strictly polynomial preserving.

The theory is first presented for one dimensional data then
extended to two dimensional data as encountered in image
processing.

II. THEORETICAL FRAMEWORK

Past analysis of polynomial moments has focused on their
application in pattern recognition and not on filtering [1],
[5], [6], [8], [9], [21]–[23]. Polynomial moments have been
proposed for filtering [24]; however, no formal analysis has
been performed for such applications. Whereas, Savitzky Go-
lay smoothing focused on filtering but payed no attention to
the global characteristics of the polynomial approximations.
The aim in this section is to develop a theoretical framework
which unifies both aspects. At this point no assumptions are
made with respect to the basis function set being used2.

The most general formulation of a discrete equivalent of an
integral-transform is,

s = B+
a y. (5)

The spectrum s of the data y is determined by computing the
discrete equivalent of an integral transform. The formulation
with the Moore-Penrose pseudo inverse B+

a has been chosen
since it is the least squares solution for non-orthogonal bases.
Discrete polynomial moments belong to a class of basis
functions who’s spectrum can be calculated as above. The
synthesis of a signal, i.e. the inverse transform is computed
as,

ŷ = Bs s (6)

whereby, Bs contains the synthesis functions.

A. Completeness and invertibility

Equations 5 and 6 can be combined to yield,

ŷ = Bs s = Bs B+
a y. (7)

2Some examples of suitable basis functions are: the Fourier basis; discrete
orthogonal polynomials; the bessel functions and the Haar functions. The most
appropriate basis functions depend on the nature of the application at hand.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010 

1994International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

22
68

.p
df



In general the basis function Ba and Bs are related via per-
mutation matrices, i.e. they are fundamentally the same type
of basis functions, but possibly evaluated at different nodes or
of different degrees. The reconstruction error r = y − ŷ is,

r = y − Bs B+
a y

=
(
I − Bs B+

a

)
y (8)

Consequently, perfect reconstruction is given if the projection
onto the orthogonal complement I − Bs B+

a = 0. This can be
achieved using a unitary3 and complete4 basis for analysis and
reconstruction; i.e. B = Ba = Bs such that,

r =
(
I − BBT

)
y = 0. (9)

In general, the complex conjugate transpose5 of any complete
unitary basis is its inverse.

B. A formalism for filtering

Spectral filtering can be modelled in three steps:

1) computing the signal polynomial spectrum,

sδ = BT yδ; (10)

2) filtering the spectrum with the filter F

sδ
F = FBT yδ; (11)

3) synthesizing the filtered signal, yδ
F

yδ
F = B sδ

F = B F BT yδ. (12)

If the filter function is factorable we can define F � GGT and
D � BG. Consequently,

yδ
F = B G GT BT yδ = DDT yδ. (13)

Note: P � D DT is an orthogonal projection onto the filtering
basis functions. Given a set of n points the projection P
has the dimension n × n, i.e. each filtered point yδ

F,i is a
linear combination of all input values. Consequently, the rows
of the projection matrix can be regarded as the coefficients
of an FIR filter; this enables the direct computation of the
frequency response [25]. Knowing that the gaussian input
noise is spread evenly over the complete spectrum yields the
nosie gain gn = |F|22. This is a very important new result,
enabling for the first time analytic computation on the noise
behaviour of polynomial filters. In polynomial preserving
filters an unmodified subset of the complete basis functions
are used. In this case an orthogonal but incomplete basis set
is used. In this manner both low pass and band pass filters can
be implemented.

3Unitary implies BT B = I, i.e. an orthogonal matrix.
4A unitary and complete matrix fulfills the condition BT B = BBT = I.
5The transpose (.)T always refers to the complex conjugate transpose in

this paper.

C. Linear transformations and covariance propagation

In general measurements are perturbed by noise, i.e. the
observations yδ are noisy,

yδ = y + δ un, (14)

consisting of the ideal signal y with additive white noise δ un,
where: un is a vector of gaussian noise with zero mean and
covariance matrix Λy .

There are two cases of interest with respect to the applica-
tion of discrete orthogonal basis functions and the propagation
of covariance:

1) propagation from the spatial (temporal) to the spectral
domain during the computation s = BT yδ;

2) propagation from input to output of a filter, yf = P yδ .
Both these cases involve the covariance propagation through
linear transformations. Given a general linear transformation
represented as a matrix L, and the input covariance matrix Λy ,
the covariance propagation is given by,

Λf = L Λy LT . (15)

If the signal y is perturbed by independent and identically
distributed Gaussian noise, then the covariance of y is,

Λy = diag
{
σ2, . . . , σ2

}
= σ2 Im (16)

where Im is an m × m identity matrix. Consequently,

Λf = σ2 L LT . (17)

In the special case of computing the spectrum with a unitary
and complete set of basis functions, L = B and L LT = I,
consequently the covariance of the spectrum is,

Λs = σ2 Im. (18)

This proof states that gaussian noise has a flat power
spectral density for all unitary and complete basis function
sets, independent of their nature, i.e., Parseval’s theorem is
true for all unitary and complete bases. This fact is well known
from regularization theory for unitary matrices [26] and has
been applied in the past to the Fourier and Cosine Bases.
The new algebraic approach to analyzing polynomial basis
functions proposed here enables the extension of this theory
to polynomials and generalized finite impulse response (FIR)
filters.

III. LOCAL AND GLOBAL POLYNOMIAL SMOOTHING

Consider performing smoothing on a set of n data points, a
support length of ls and of degree d: note ls = n is a special
case and corresponds to global polynomial approximation. To
support understanding the example with n = 10, ls = 5
and d = 3 are presented graphically in figures 2 and 3. The
algorithm to generate the complete linear transformation PC

for all n points is:
Step 1: compute a unitary basis B for ls and d using the

procedure proposed by O’Leary and Harker?? [12]. This is a
unitary but incomplete basis, since d < ls − 1;
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Step 2: compute the local projection matrix P = BBT , this
is an ls × ls matrix, see Figure 2 for the example ls = 5
and d = 3. The center row of P corresponds to computing the
projection at the center of the support px=0. These coefficients
are symmetric implying that the frequency response is strictly
linear phase6. The rows above and below px=0 correspond to
the projections onto the basis functions at the start and end of
the data respectively, i.e. where the end of the support is being
approached. The coefficients in this region are asymmetric, the
corresponding non-linear phase is responsible for the fact that
polynomial approximations tend to oscillate the end of their
support.

x(0)

Fig. 2. Left: structure of the projection matrix. Right: example projection
for a basis with support length ls = 5 and of degree d = 3.

Step 3: generate the global complete matrix PC . By placing
the top and bottom of the projection matrix P at the start and
end of PC . The core of the matrix, nc = n − ls + 1 points,
is filled diagonally with px=0, see Figure 3 for an example.
Consequently, the core of the smoothing is strictly linear phase
and produces no oscillatory behavior, unless of course there
is a source of significant Gibbs error [20]. The matrix PC is
a linear transformation, but not a projection matrix; note it is
not symmetric. This algorithm enables the generation of the

Fig. 3. Left: structure of the linear transformation for Savitzky Golay
Smoothing. Right: example projection for support length ls = 5, of degree
d = 3, and n = 10 points.

linear transformation matrix required for the complete region
from local to global polynomial filtering. To demonstrate this,
the transformation for ls = 5, of degree d = 3, and n = 10
points is shown in Figure 4, note the peaking at the end of the
support. The corresponding frequency response is shown in
Figure 5, it exhibits strong resonant peaking at the borders of
the support. The core frequency response is shown in Figure
6.

6All FIR filters with symmetric coefficients are strictly linear phase [25].

Fig. 4. Example of the transformation matrix with the parameters ls = 51,
of degree d = 5, and n = 100 points.

Fig. 5. Frequency response of the transformation from Figure 4.

IV. EXTENSION TO 2D LATICES

Consider a set of 2D data Z lying on a rectangular separable
lattice, this is generally the case when working with images or
measurement data scanned on a regular interval. The filtered
data Ẑ is computed as:

Ẑ = Py Z PT
x , (19)

where, Px and Py are the transformation matrices applied in
the x and y directions. Different transformations may be used
in each direction as required. These then form anisotropic
polynomial approximations. An example geometric surface
data is shown in Figure 7. The local anomalies ZA are
extracted via local polynomial approximation,

ZA = ZG − Py ZG PT
x (20)

where, ls,x = 61, dx = 3, nx = 1215 and ls,y = 31, dy = 3,
ny = 640. Anisotropic paramaters have been chosen for this
demonstration.

V. CONCLUSIONS

A new theoretical framework has been presented for poly-
nomial approximations. A virtually perfect Gram polynomial
basis set is synthesized: this ensures that the approximations
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Fig. 6. Core frequency response of the transformation from Figure 4.

Fig. 7. Surface geometry ZG scanned on a 640 × 1215 data grid.

are strictly polynomial preserving; and polynomials of degree
d = 1000 can be generated without significant errors. Con-
sequently, it is possible to have a seamless transition from
Savitzky-Golay smoothing (low degree local approximation)
to high degree global approximations. The unitary Gram basis
also enables the computation of covariance propagation and
noise gain for the polynomial filters.

The representation of polynomial smoothing as an orthog-
onal projection onto a basis function set, delivers directly a
method of computing the frequency response of the filter.
Furthermore, the projection matrix and the corresponding fre-
quency response show the tendency of polynomial approxima-
tions to oscillate at the borders of the support. Given n points
and a support length ls = 2m+1 then the smoothing operator
is strictly linear phase for the points xi, i = m+1 . . . n−m.
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[13] P. O’Leary, B. Mörtl, and M. Harker, “Discrete polynomial moments
and the extraction of 3d embossed digits for recognition,” Submitted to
Journal of Electronic Imaging, 2009.

[14] H. Madden, “Comments on the Savitzky-Golay convolution method for
least-squares-fit smoothing and differentiation of digital data,” Analytical
Chemistry, vol. 50 (9), p. 13831386, 1978.

[15] S. Rajagopalan and R. Robb, “Image smoothing with Savitzky-Golay
filters,” in Medical Imaging 2003: Visualization, Image-Guided Proce-
dures, and Display, vol. Vol. 5029, May 2003, 2003, p. 773..781.

[16] P. Meer and I. Weiss, “Smoothed differentiation filters for images,” in
IEEE I10th International Conference on Pattern Recognition, vol. 2,
June 1990, Atlantic City, NJ, USA, 1990, p. 121..126.

[17] P. Gorry, “General least-squares smoothing and differentiation by the
convolution (Savitzky-Golay) method,” Analytical Chemistry, vol. 62,
p. 570..573, 1990.

[18] R. Barnard, G. Dahlquist, K. Pearce, L. Reichel, and K. Richards,
“Gram polynomials and the kummer function,” Journal of
Approximation Theory, vol. 94, no. 1, pp. 128 – 143,
1998. [Online]. Available: http://www.sciencedirect.com/science/article/
B6WH7-45K18JY-H/2/c92d2ff697d7631c99abe5d80f281d24

[19] J. Boyd, Chebyschev and Fourier Spectral Methods. Mineola, New
York: Dover Publications Inc., 2001.

[20] A. Jerri, The Gibbs Phenomenon in Fourier Analysis, Splines and
Wavelet Approximations. Dordrecht, Netherlands: Kluver Academic
Publishers, 1998.

[21] S. Ong and P. Raveendren, “Image feature analysis by Hahn orthogonal
moments,” Lecture Notes in Computer Science, vol. 3656, pp. 524–531,
2005.

[22] Z. Ping, H. Ren, J. Zou, Y. Sheng, and W. Bo, “Generic orthogonal
moments: Jackobi-Fourier moments for invariant image description,”
Pattern Recognition, vol. 40, pp. 1245–1254, 2005.

[23] B. Bayraktar, T. Bernas, P. Robinson, and B. Rajwa, “A numerical recipe
for accurate image reconstruction from discrete orthogonal moments,”
Pattern Recognition, vol. 40, pp. 659–669, 2007.

[24] J. Thurston and J. Brawn, “The filtering characteristics of least-squares
polynomial approximation for regional/residual separation,” Canadian
Journal of Exploration Physics, vol. 28(2), pp. 71–80, 1992.

[25] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.
Engelwood Cliffs: Prentice Hall, 1989.

[26] H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Prob-
lems, 1st ed. Dordrecht: Kluver Academic Publishers, 2000.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010 

1997International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

22
68

.p
df


