WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10639,
	  title     = {Structural and Optical Properties ofInxAlyGa1-x-yN Quaternary Alloys},
	  author    = {N. H. Abd Raof and  H. Abu Hassan and  S.K. Mohd Bakhori and  S. S. Ng and  Z. Hassan},
	  country	= {},
	  institution	= {},
	  abstract     = {Quaternary InxAlyGa1-x-yN semiconductors have
attracted much research interest because the use of this quaternary
offer the great flexibility in tailoring their band gap profile while
maintaining their lattice-matching and structural integrity. The
structural and optical properties of InxAlyGa1-x-yN alloys grown by
molecular beam epitaxy (MBE) is presented. The structural quality of
InxAlyGa1-x-yN layers was characterized using high-resolution X-ray
diffraction (HRXRD). The results confirm that the InxAlyGa1-x-yN
films had wurtzite structure and without phase separation. As the In
composition increases, the Bragg angle of the (0002) InxAlyGa1-x-yN
peak gradually decreases, indicating the increase in the lattice constant
c of the alloys. FWHM of (0002) InxAlyGa1-x-yN decreases with
increasing In composition from 0 to 0.04, that could indicate the
decrease of quality of the samples due to point defects leading to
non-uniformity of the epilayers. UV-VIS spectroscopy have been used
to study the energy band gap of InxAlyGa1-x-yN. As the indium (In)
compositions increases, the energy band gap decreases. However, for
InxAlyGa1-x-yN with In composition of 0.1, the band gap shows a
sudden increase in energy. This is probably due to local alloy
compositional fluctuations in the epilayer. The bowing parameter
which appears also to be very sensitive on In content is investigated
and obtained b = 50.08 for quaternary InxAlyGa1-x-yN alloys. From
photoluminescence (PL) measurement, green luminescence (GL)
appears at PL spectrum of InxAlyGa1-x-yN, emitted for all x at ~530 nm
and it become more pronounced as the In composition (x) increased,
which is believed cause by gallium vacancies and related to isolated
native defects.},
	    journal   = {International Journal of Electronics and Communication Engineering},
	  volume    = {3},
	  number    = {7},
	  year      = {2009},
	  pages     = {1448 - 1451},
	  ee        = {https://publications.waset.org/pdf/10639},
	  url   	= {https://publications.waset.org/vol/31},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 31, 2009},
	}